431 research outputs found

    Exploring the formation of spheroidal galaxies out to z ∼ 1.5 in GOODS

    Get PDF
    The formation of massive spheroidal galaxies is studied on a visually classified sample extracted from the Advanced Camera for Surveys/Hubble Space Telescope (ACS/HST) images of the Great Observatories Origins Deep Survey north and south fields, covering a total area of 360 arcmin . The sample size (910 galaxies brighter than i = 24) allows us to explore in detail the evolution over a wide range of redshifts (0.4 10 M galaxies by a factor of 2 between z = 1 and 0, in contrast with a factor of ∼50 for lower mass galaxies (10 <M / M <10 ). One-quarter of the whole sample of early types are photometrically classified as blue galaxies. On a volume-limited sample out to z <0.7, the average stellar mass of the blue ellipticals is 5 × 10 M compared to 4 × 10 M for red ellipticals. On a volume-limited subsample out to z = 1.4 probing the brightest galaxies (M <-21), we find the median redshift of blue and red early types: 1.10 and 0.85, respectively. Blue early types only amount to 4 per cent of this sample (compared to 26 per cent in the full sample). The intrinsic colour distribution correlates overall bluer colours with blue cores (positive radial gradients of colour), suggesting an inside-out process of formation. The redshift evolution of the observed colour gradients is incompatible with a significant variation in stellar age within each galaxy. The slope of the Kormendy relation in the subsample of massive galaxies does not change over 0.4 <z <1.4 and is compatible with z = 0 values. The 'zero-point' of the Kormendy relation (i.e. the surface brightness at a fixed half-light radius) is 1 mag fainter (in the B band) for the subsample of low-mass (M <3.5 × 10 M ) early types.Peer reviewe

    Evolution of field early-type galaxies: The view from GOODS CDFS

    Get PDF
    We explore the evolution of field early-type galaxies in a sample extracted from the ACS images of the southern GOODS field. The galaxies are selected by means of a nonparametric analysis, followed by visual inspection of the candidates with a concentrated surface brightness distribution. We furthermore exclude from the final sample those galaxies that are not consistent with an evolution into the Kormendy relation between surface brightness and size that is observed for z = 0 ellipticals. The final set, which comprises 249 galaxies with a median redshift z(m) = 0.71, represents a sample of early-type systems not selected with respect to color, with similar scaling relations as those of bona fide elliptical galaxies. The distribution of number counts versus apparent magnitude rejects a constant number density with cosmic time and suggests a substantial decrease with redshift: n proportional to (1 + z)(-2.5). The majority of the galaxies (78%) feature passively evolving old stellar populations. One-third of those in the upper half of the redshift distribution have blue colors, in contrast to only 10% in the lower redshift subsample. An adaptive binning of the color maps using an optimal Voronoi tessellation is performed to explore the internal color distribution. We find that the red and blue early-type galaxies in our sample have distinct behavior with respect to the color gradients, so that most blue galaxies feature blue cores whereas most of the red early-types are passively evolving stellar populations with red cores, i.e., similar systems to local early-type galaxies. Furthermore, the color gradients and scatter do not evolve with redshift and are compatible with the observations at z 0, assuming a radial dependence of the metallicity within each galaxy. Significant gradients in the stellar age are readily ruled out. This work emphasizes the need for a careful sample selection, as we found that most of those galaxies that were visually classified as candidate early types-but then rejected based on the Kormendy relation-feature blue colors characteristic of recent star formation

    FERENGI: Redshifting galaxies from SDSS to GEMS, STAGES and COSMOS

    Full text link
    We describe the creation of a set of artificially "redshifted" galaxies in the range 0.1<z<1.1 using a set of ~100 SDSS low redshift (v<7000 km/s) images as input. The intention is to generate a training set of realistic images of galaxies of diverse morphologies and a large range of redshifts for the GEMS and COSMOS galaxy evolution projects. This training set allows other studies to investigate and quantify the effects of cosmological redshift on the determination of galaxy morphologies, distortions and other galaxy properties that are potentially sensitive to resolution, surface brightness and bandpass issues. We use galaxy images from the SDSS in the u, g, r, i, z filter bands as input, and computed new galaxy images from these data, resembling the same galaxies as located at redshifts 0.1<z<1.1 and viewed with the Hubble Space Telescope Advanced Camera for Surveys (HST ACS). In this process we take into account angular size change, cosmological surface brightness dimming, and spectral change. The latter is achieved by interpolating a spectral energy distribution that is fit to the input images on a pixel-to-pixel basis. The output images are created for the specific HST ACS point spread function and the filters used for GEMS (F606W and F850LP) and COSMOS (F814W). All images are binned onto the desired pixel grids (0.03" for GEMS and 0.05" for COSMOS) and corrected to an appropriate point spread function. Noise is added corresponding to the data quality of the two projects and the images are added onto empty sky pieces of real data images. We make these datasets available from our website, as well as the code - FERENGI: "Full and Efficient Redshifting of Ensembles of Nearby Galaxy Images" - to produce datasets for other redshifts and/or instruments.Comment: 11 pages, 10 figures, 3 table

    Virgo cluster early-type dwarf galaxies with the Sloan Digital Sky Survey. IV. The color-magnitude relation

    Full text link
    We present an analysis of the optical colors of 413 Virgo cluster early-type dwarf galaxies (dEs), based on Sloan Digital Sky Survey imaging data. Our study comprises (1) a comparison of the color-magnitude relation (CMR) of the different dE subclasses that we identified in Paper III of this series, (2) a comparison of the shape of the CMR in low and high-density regions, (3) an analysis of the scatter of the CMR, and (4) an interpretation of the observed colors with ages and metallicities from population synthesis models. We find that the CMRs of nucleated (dE(N)) and non-nucleated dEs (dE(nN)) are significantly different from each other, with similar colors at fainter magnitudes (r > 17 mag), but increasingly redder colors of the dE(N)s at brighter magnitudes. We interpret this with older ages and/or higher metallicities of the brighter dE(N)s. The dEs with disk features have similar colors as the dE(N)s and seem to be only slightly younger and/or less metal-rich on average. Furthermore, we find a small but significant dependence of the CMR on local projected galaxy number density, consistently seen in all of u-r, g-r, and g-i, and weakly i-z. We deduce that a significant intrinsic color scatter of the CMR is present, even when allowing for a distance spread of our galaxies. No increase of the CMR scatter at fainter magnitudes is observed down to r = 17 mag (Mr = -14 mag). The color residuals, i.e., the offsets of the data points from the linear fit to the CMR, are clearly correlated with each other in all colors for the dE(N)s and for the full dE sample. We conclude that there must be at least two different formation channels for early-type dwarfs in order to explain the heterogeneity of this class of galaxy. (Abridged)Comment: 17 pages + 12 figures. Accepted for publication in A

    Subdwarf B Stars from the ESO Supernova Ia Progenitor Survey -- Observation versus Theory

    Get PDF
    Original paper can be found at: http://www.astrosociety.org/pubs/cs/328.html--Copyright Astronomical Society of the PacificWe present the analysis of a high-quality sample of optical spectra for 76 sdB stars from the ESO Supernova Ia Progenitor Survey. Effective temperature, surface gravity, and photospheric helium abundance were derived from line profile fits. We demonstrate that our subsample of 52 single-lined sdB stars is a useful tool to compare observation and theory. The predictions of population synthesis models for close binary evolution are compared to our data. We show that the simulations cover the observed parameter range of sdBs, but fail to reproduce the observed distribution in detail

    Disks in Early-Type Dwarf Galaxies

    Get PDF
    We identify disk features (spiral arms, bars, or edge-on disks) in a significant fraction of Virgo cluster early-type dwarfs. These galaxies are disk-shaped and are an unrelaxed cluster population that possibly formed out of infalling progenitors. Some display spiral arms with grand design features that cannot be the mere remainders of potential late-type spiral progenitor

    High resolution UVES/VLT spectra of white dwarfs observed for the ESO SN Ia Progenitor Survey III. DA white dwarfs

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO) DOI: 10.1051/0004-6361/200912531Context. The ESO Supernova Ia Progenitor Survey (SPY) took high-resolution spectra of more than 1000 white dwarfs and pre-white dwarfs. About two thirds of the stars observed are hydrogen-dominated DA white dwarfs. Here we present a catalog and detailed spectroscopic analysis of the DA stars in the SPY. Aims. Atmospheric parameters effective temperature and surface gravity are determined for normal DAs. Double-degenerate binaries, DAs with magnetic fields or dM companions, are classified and discussed. Methods. The spectra are compared with theoretical model atmospheres using a fitting technique. Results. Our final sample contains 615 DAs, which show only hydrogen features in their spectra, although some are double-degenerate binaries. 187 are new detections or classifications. We also find 10 magnetic DAs (4 new) and 46 DA+dM pairs (10 new).Peer reviewe

    Close binary EHB stars from SPY

    Get PDF
    We present the results of a radial velocity (RV) survey of 46 subdwarf B (sdB) and 23 helium-rich subdwarf O (He-sdO) stars. We detected 18 (39%) new sdB binary systems, but only one (4%) He-sdO binary. Orbital parameters of nine sdB and sdO binaries, derived from follow-up spectroscopy, are presented. Our results are compared with evolutionary scenarios and previous observational investigations.Comment: To appear in "Extreme Horizontal Branch Stars and Related Objects", Astrophysics and Space Science, Kluver Academic Publishers, edited by P.F.L. Maxte
    • …
    corecore