61 research outputs found

    Investigation of Parameters that Affect the Success Rate of Microarray-Based Allele-Specific Hybridization Assays

    Get PDF
    BACKGROUND: The development of microarray-based genetic tests for diseases that are caused by known mutations is becoming increasingly important. The key obstacle to developing functional genotyping assays is that such mutations need to be genotyped regardless of their location in genomic regions. These regions include large variations in G+C content, and structural features like hairpins. METHODS/FINDINGS: We describe a rational, stable method for screening and combining assay conditions for the genetic analysis of 42 Phenylketonuria-associated mutations in the phenylalanine hydroxylase gene. The mutations are located in regions with large variations in G+C content (20-75%). Custom-made microarrays with different lengths of complementary probe sequences and spacers were hybridized with pooled PCR products of 12 exons from each of 38 individual patient DNA samples. The arrays were washed with eight buffers with different stringencies in a custom-made microfluidic system. The data were used to assess which parameters play significant roles in assay development. CONCLUSIONS: Several assay development methods found suitable probes and assay conditions for a functional test for all investigated mutation sites. Probe length, probe spacer length, and assay stringency sufficed as variable parameters in the search for a functional multiplex assay. We discuss the optimal assay development methods for several different scenarios

    Mottled mice and non-mammalian models of Menkes disease

    Get PDF
    Menkes disease is a multi-systemic copper metabolism disorder caused by mutations in the X-linked ATP7A gene and characterised by progressive neurodegeneration and severe connective tissue defects. The ATP7A protein is a Copper (Cu)-transporting ATPase expressed in all tissues and plays a critical role in the maintenance of copper homeostasis in cells of the whole body. ATP7A participates in copper absorption in the small intestine and in copper transport to the CNS across the blood-brain-barrier and blood–cerebrospinal fluid- barrier. Cu is essential for synaptogenesis and axonal development. In cells, ATP7A participates in the incorporation of copper into Cu-dependent enzymes during the course of its maturation in the secretory pathway. There is a high degree of homology (>80% ) between the human ATP7A and murine Atp7a genes. Mice with mutations in the Atp7a gene, called mottled mutants, are well-established and excellent models of Menkes disease. Mottled mutants closely recapitulate the Menkes phenotype and are invaluable for studying Cu-metabolism. They provide useful models for exploring and testing new forms of therapy in Menkes disease. Recently, non-mammalian models of Menkes disease, Drosophila melanogaster and Danio rerio mutants were used in experiments which would be technically difficult to carry out in mammals

    Occipital Horn Syndrome as a Result of Splice Site Mutations in ATP7A. No Activity of ATP7A Splice Variants Missing Exon 10 or Exon 15

    Get PDF
    Disease-causing variants in ATP7A lead to two different phenotypes associated with copper deficiency; a lethal form called Menkes disease (MD), leading to early death, and a much milder form called occipital horn syndrome (OHS). Some investigators have proposed that an ATP7A transcript missing exon 10 leads to a partly active protein product resulting in the OHS phenotype. Here, we describe an individual with OHS, a biology professor, who survived until age 62 despite a splice site mutation, leading to skipping of exon 15. ATP7A transcripts missing exon 10, or exon 15 preserve the reading frame, but it is unknown if either of these alternative transcripts encode functional protein variants. We have investigated the molecular consequence of splice site mutations leading to skipping of exon 10 or exon 15 which have been identified in individuals with OHS, or MD. By comparing ATP7A expression in fibroblasts from three individuals with OHS (OHS-fibroblasts) to ATP7A expression in fibroblasts from two individuals with MD (MD-fibroblasts), we demonstrate that transcripts missing either exon 10 or exon 15 were present in similar amounts in OHS-fibroblasts and MD-fibroblasts. No ATP7A protein encoded from these transcripts could be detected in the OHS and MD fibroblast. These results, combined with the observation that constructs encoding ATP7A cDNA sequences missing either exon 10, or exon 15 were unable to complement the high iron requirement of the ccc2Δ yeast strain, provide evidence that neither a transcript missing exon 10 nor a transcript missing exon 15 results in functional ATP7A protein. In contrast, higher amounts of wild-type ATP7A transcript were present in the OHS-fibroblasts compared with the MD-fibroblasts. We found that the MD-fibroblasts contained between 0 and 0.5% of wild-type ATP7A transcript, whereas the OHS-fibroblasts contained between 3 and 5% wild-type transcripts compared with the control fibroblasts. In summary these results indicate that protein variants encoded by ATP7A transcripts missing either exon 10 or exon 15 are not functional and not responsible for the OHS phenotype. In contrast, expression of only 3-5% of wild-type transcript compared with the controls permits the OHS phenotype

    Molecular genetic analysis using targeted NGS analysis of 677 individuals with retinal dystrophy

    Get PDF
    Abstract Inherited retinal diseases (IRDs) are a common cause of visual impairment. IRD covers a set of genetically highly heterogeneous disorders with more than 150 genes associated with one or more clinical forms of IRD. Molecular genetic diagnosis has become increasingly important especially due to expanding number of gene therapy strategies under development. Next generation sequencing (NGS) of gene panels has proven a valuable diagnostic tool in IRD. We present the molecular findings of 677 individuals, residing in Denmark, with IRD and report 806 variants of which 187 are novel. We found that deletions and duplications spanning one or more exons can explain 3% of the cases, and thus copy number variation (CNV) analysis is important in molecular genetic diagnostics of IRD. Seven percent of the individuals have variants classified as pathogenic or likely-pathogenic in more than one gene. Possible Danish founder variants in EYS and RP1 are reported. A significant number of variants were classified as variants with unknown significance; reporting of these will hopefully contribute to the elucidation of the actual clinical consequence making the classification less troublesome in the future. In conclusion, this study underlines the relevance of performing targeted sequencing of IRD including CNV analysis as well as the importance of interaction with clinical diagnoses

    Clinical expression of Menkes disease in females with normal karyotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Menkes Disease (MD) is a rare X-linked recessive fatal neurodegenerative disorder caused by mutations in the <it>ATP7A </it>gene, and most patients are males. Female carriers are mosaics of wild-type and mutant cells due to the random X inactivation, and they are rarely affected. In the largest cohort of MD patients reported so far which consists of 517 families we identified 9 neurologically affected carriers with normal karyotypes.</p> <p>Methods</p> <p>We investigated at-risk females for mutations in the <it>ATP7A </it>gene by sequencing or by multiplex ligation-dependent probe amplification (MLPA). We analyzed the X-inactivation pattern in affected female carriers, unaffected female carriers and non-carrier females as controls, using the human androgen-receptor gene methylation assay (<it>HUMAR</it>).</p> <p>Results</p> <p>The clinical symptoms of affected females are generally milder than those of affected boys with the same mutations. While a skewed inactivation of the X-chromosome which harbours the mutation was observed in 94% of 49 investigated unaffected carriers, a more varied pattern was observed in the affected carriers. Of 9 investigated affected females, preferential silencing of the normal X-chromosome was observed in 4, preferential X-inactivation of the mutant X chromosome in 2, an even X-inactivation pattern in 1, and an inconclusive pattern in 2. The X-inactivation pattern correlates with the degree of mental retardation in the affected females. Eighty-one percent of 32 investigated females in the control group had moderately skewed or an even X-inactivation pattern.</p> <p>Conclusion</p> <p>The X- inactivation pattern alone cannot be used to predict the phenotypic outcome in female carriers, as even those with skewed X-inactivation of the X-chromosome harbouring the mutation might have neurological symptoms.</p
    corecore