24 research outputs found

    Shallow gas migration along hydrocarbon wells – An unconsidered, anthropogenic source of biogenic methane in the North Sea

    Get PDF
    Shallow gas migration along hydrocarbon wells constitutes a potential methane emission pathway that currently is not recognized in any regulatory framework or greenhouse gas inventory. Recently, the first methane emission measurements at three abandoned offshore wells in the Central North Sea (CNS) were conducted showing that considerable amounts of biogenic methane originating from shallow gas accumulations in the overburden of deep reservoirs were released by the boreholes. Here, we identify numerous wells poking through shallow gas pockets in 3D seismic data of the CNS indicating that about one third of the wells may leak, potentially releasing a total of 3-17 kt of methane per year into the North Sea. This poses a significant contribution to the North Sea methane budget. A large fraction of this gas (~42 %) may reach the atmosphere via direct bubble transport (0-2 kt yr-1) and via diffusive exchange of methane dissolving in the surface mixed layer (1-5 kt yr-1), as indicated by numerical modeling. In the North Sea and in other hydrocarbon-prolific provinces of the world shallow gas pockets are frequently observed in the sedimentary overburden and aggregate leakages along the numerous wells drilled in those areas may be significant

    Greenhouse gas emissions from marine decommissioned hydrocarbon wells: leakage detection, monitoring and mitigation strategies

    Get PDF
    Highlights • Gas release from wells may counteract efforts to mitigate greenhouse gas emissions. • An approach for assessing methane release from marine decommissioned wells. • This gas release largely depends on the presence of shallow gas accumulations. • Methane release from hydrocarbon wells represents a major source in the North Sea. Abstract Hydrocarbon gas emissions from with decommissioned wells are an underreported source of greenhouse gas emissions in oil and gas provinces. The associated emissions may partly counteract efforts to mitigate greenhouse gas emissions from fossil fuel infrastructure. We have developed an approach for assessing methane leakage from marine decommissioned wells based on a combination of existing regional industrial seismic and newly acquired hydroacoustic water column imaging data from the Central North Sea. Here, we present hydroacoustic data which show that 28 out of 43 investigated wells release gas from the seafloor into the water column. This gas release largely depends on the presence of shallow gas accumulations and their distance to the wells. The released gas is likely primarily biogenic methane from shallow sources. In the upper 1,000 m below the seabed, gas migration is likely focused along drilling-induced fractures around the borehole or through non-sealing barriers. Combining available direct measurements for methane release from marine decommissioned wells with our leakage analysis suggests that gas release from investigated decommissioned hydrocarbon wells is a major source of methane in the North Sea (0.9-3.7 [95% confidence interval = 0.7-4.2] kt yr−1 of CH4 for 1,792 wells in the UK sector of the Central North Sea). This means hydrocarbon gas emissions associated with marine hydrocarbon wells are not significant for the global greenhouse gas budget, but have to be considered when compiling regional methane budgets

    Emerging Priorities for Microbiome Research

    Get PDF
    Microbiome research has increased dramatically in recent years, driven by advances in technology and significant reductions in the cost of analysis. Such research has unlocked a wealth of data, which has yielded tremendous insight into the nature of the microbial communities, including their interactions and effects, both within a host and in an external environment as part of an ecological community. Understanding the role of microbiota, including their dynamic interactions with their hosts and other microbes, can enable the engineering of new diagnostic techniques and interventional strategies that can be used in a diverse spectrum of fields, spanning from ecology and agriculture to medicine and from forensics to exobiology. From June 19–23 in 2017, the NIH and NSF jointly held an Innovation Lab on Quantitative Approaches to Biomedical Data Science Challenges in our Understanding of the Microbiome. This review is inspired by some of the topics that arose as priority areas from this unique, interactive workshop. The goal of this review is to summarize the Innovation Lab’s findings by introducing the reader to emerging challenges, exciting potential, and current directions in microbiome research. The review is broken into five key topic areas: (1) interactions between microbes and the human body, (2) evolution and ecology of microbes, including the role played by the environment and microbe-microbe interactions, (3) analytical and mathematical methods currently used in microbiome research, (4) leveraging knowledge of microbial composition and interactions to develop engineering solutions, and (5) interventional approaches and engineered microbiota that may be enabled by selectively altering microbial composition. As such, this review seeks to arm the reader with a broad understanding of the priorities and challenges in microbiome research today and provide inspiration for future investigation and multi-disciplinary collaboration

    Forming consensus to advance urobiome research

    Get PDF
    Urobiome research has the potential to advance the understanding of a wide range of diseases, including lower urinary tract symptoms and kidney disease. Many scientific areas have benefited from early research method consensus to facilitate the greater, common good. This consensus document, developed by a group of expert investigators currently engaged in urobiome research (UROBIOME 2020 conference participants), aims to promote standardization and advances in this field by the adoption of common core research practices. We propose a standardized nomenclature as well as considerations for specimen collection, preservation, storage, and processing. Best practices for urobiome study design include our proposal for standard metadata elements as part of core metadata collection. Although it is impractical to follow fixed analytical procedures when analyzing urobiome data, we propose guidelines to document and report data originating from urobiome studies. We offer this first consensus document with every expectation of subsequent revision as our field progresses

    Medications are associated with falls in people with multiple sclerosis - A Prospective Cohort study

    No full text
    Background: Medication use is associated with falls in many populations, but the relationship between medications and falls in people with multiple sclerosis (MS) is not well understood. Methods: The number and types of medications used by 248 ambulatory adults with MS in the United States (n = 53) and Australia (n = 195) were assessed. Participants completed fall diaries for 6 months. Associations between number and type of medications reported and falls, adjusting for age, disease severity, comorbidities, sex, and country, were evaluated using multiple logistic regression. Results: Participants reported taking a median of three medications and two supplements. A total of 143 participants (58%) fell at least once in the 6 months, and 110 (44%) experienced one or more injurious falls. The adjusted relative odds of a fall or an injurious fall increased by 13% (P = .048) and 11% (P = .049), respectively, for each medication and by 43% (P = .015) and 55% (P = .001) for each neurologically active medication. Reported use of MS disease-modifying therapy was associated with 48% decreased odds of falling (P = .035) but not significantly decreased odds of injurious falls. Conclusions: Reporting use of more medications and more neurologically active medications is associated with falls and injurious falls in people with MS. Close evaluation of the need for each medication, with associated minimization of neurologically active medications in patients with MS, may help prevent falls. Use of MS disease-modifying therapies may be associated with fewer falls. This relationship needs further evaluation

    A diet rich in fermentable fiber promotes robust changes in the intestinal microbiota, mitigates intestinal permeability, and attenuates autoimmune uveitis

    No full text
    Abstract Therapeutic approaches for noninfectious uveitis have expanded greatly over the past 10 years, but are limited by potential side effects and limited efficacy. Thus, therapeutic approaches that include less toxic, potentially preventative strategies to manage noninfectious uveitis are essential areas of study. Diets rich in fermentable fiber are potentially preventative in various conditions such as metabolic syndrome and type 1 diabetes. We studied the effects of various fermentable dietary fibers in an inducible model of experimental autoimmune uveitis (EAU) and found that they differentially modulated uveitis severity. A high pectin diet was the most protective, reducing clinical disease severity through the induction of regulatory T lymphocytes and the suppression of Th1 and Th17 lymphocytes at peak ocular inflammation in either intestinal or extra-intestinal lymphoid tissues. The high pectin diet also promoted intestinal homeostasis as shown by changes in intestinal morphology and gene expression, as well as intestinal permeability. Pectin-induced modulation of intestinal bacteria appeared to be associated with protective changes in immunophenotype in the intestinal tract, and correlated with reduced uveitis severity. In summary, our current findings support the potential for dietary intervention as a strategy to mitigate noninfectious uveitis severity
    corecore