275 research outputs found
Nitrogen Production in Starburst Galaxies Detected by GALEX
We investigate the production of nitrogen in star-forming galaxies with ultraviolet (UV) radiation detected by the Galaxy Evolution Explorer Satellite (GALEX). We use a sample of 8745 GALEX emission-line galaxies matched to the Sloan Digital Sky Survey (SDSS) spectroscopic sample. We derive both gas-phase oxygen and nitrogen abundances for the sample and apply stellar population synthesis models to derive stellar masses and star formation histories of the galaxies. We compare oxygen abundances derived using three different diagnostics. We derive the specific star formation rates of the galaxies by modeling the seven-band GALEX+SDSS photometry. We find that galaxies that have log (SFR/M_*) ≳ − 10.0 typically have values of log (N/O) ~ 0.05 dex less than galaxies with log (SFR/M_*) ≾ − 10.0 and similar oxygen abundances
A genome-wide association study of resistance to HIV infection in highly exposed uninfected individuals with hemophilia A
Human genetic variation contributes to differences in susceptibility to HIV-1 infection. To search for novel host resistance factors, we performed a genome-wide association study (GWAS) in hemophilia patients highly exposed to potentially contaminated factor VIII infusions. Individuals with hemophilia A and a documented history of factor VIII infusions before the introduction of viral inactivation procedures (1979-1984) were recruited from 36 hemophilia treatment centers (HTCs), and their genome-wide genetic variants were compared with those from matched HIV-infected individuals. Homozygous carriers of known CCR5 resistance mutations were excluded. Single nucleotide polymorphisms (SNPs) and inferred copy number variants (CNVs) were tested using logistic regression. In addition, we performed a pathway enrichment analysis, a heritability analysis, and a search for epistatic interactions with CCR5 Δ32 heterozygosity. A total of 560 HIV-uninfected cases were recruited: 36 (6.4%) were homozygous for CCR5 Δ32 or m303. After quality control and SNP imputation, we tested 1 081 435 SNPs and 3686 CNVs for association with HIV-1 serostatus in 431 cases and 765 HIV-infected controls. No SNP or CNV reached genome-wide significance. The additional analyses did not reveal any strong genetic effect. Highly exposed, yet uninfected hemophiliacs form an ideal study group to investigate host resistance factors. Using a genome-wide approach, we did not detect any significant associations between SNPs and HIV-1 susceptibility, indicating that common genetic variants of major effect are unlikely to explain the observed resistance phenotype in this populatio
Observation of Global Spin Alignment of and Vector Mesons in Nuclear Collisions
The strong force, as one of the four fundamental forces at work in the
universe, governs interactions of quarks and gluons, and binds together the
atomic nucleus. Notwithstanding decades of progress since Yukawa first
developed a description of the force between nucleons in terms of meson
exchange, a full understanding of the strong interaction remains a major
challenge in modern science. One remaining difficulty arises from the
non-perturbative nature of the strong force, which leads to the phenomenon of
quark confinement at distance scales on the order of the size of the proton.
Here we show that in relativistic heavy-ion collisions, where quarks and gluons
are set free over an extended volume, two species of produced vector (spin-1)
mesons, namely and , emerge with a surprising pattern of global
spin alignment. In particular, the global spin alignment for is
unexpectedly large, while that for is consistent with zero. The
observed spin-alignment pattern and magnitude for the cannot be
explained by conventional mechanisms, while a model with strong force fields
accommodates the current data. This is the first time that the strong force
field is experimentally supported as a key mechanism that leads to global spin
alignment. We extract a quantity proportional to the intensity of the field of
the strong force. Within the framework of the Standard Model, where the strong
force is typically described in the quark and gluon language of Quantum
Chromodynamics, the field being considered here is an effective proxy
description. This is a qualitatively new class of measurement, which opens a
new avenue for studying the behaviour of strong force fields via their imprint
on spin alignment
Observation of enhancement in Au+Au collisions at = 200 GeV
We report on the first measurement of charm-strange meson
production at midrapidity in Au+Au collisions at = 200
GeV from the STAR experiment. The yield ratio between strange ()
and non-strange () open-charm mesons is presented and compared to model
calculations. A significant enhancement, relative to a PYTHIA simulation of
+ collisions, is observed in the yield ratio in Au+Au
collisions over a large range of collision centralities. Model calculations
incorporating abundant strange-quark production in the quark-gluon plasma (QGP)
and coalescence hadronization qualitatively reproduce the data. The
transverse-momentum integrated yield ratio of at midrapidity
is consistent with a prediction from a statistical hadronization model with the
parameters constrained by the yields of light and strange hadrons measured at
the same collision energy. These results suggest that the coalescence of charm
quarks with strange quarks in the QGP plays an important role in
meson production in heavy-ion collisions
Tomography of Ultra-relativistic Nuclei with Polarized Photon-gluon Collisions
A linearly polarized photon can be quantized from the Lorentz-boosted
electromagnetic field of a nucleus traveling at ultra-relativistic speed. When
two relativistic heavy nuclei pass one another at a distance of a few nuclear
radii, the photon from one nucleus may interact through a virtual
quark-antiquark pair with gluons from the other nucleus forming a short-lived
vector meson (e.g. ). In this experiment, the polarization was
utilized in diffractive photoproduction to observe a unique spin interference
pattern in the angular distribution of decays.
The observed interference is a result of an overlap of two wave functions at a
distance an order of magnitude larger than the travel distance
within its lifetime. The strong-interaction nuclear radii were extracted from
these diffractive interactions, and found to be fm () and fm (), larger than the nuclear charge
radii. The observable is demonstrated to be sensitive to the nuclear geometry
and quantum interference of non-identical particles
Longitudinal double-spin asymmetry for inclusive jet and dijet production in polarized proton collisions at root s=510 GeV
We report measurements of the longitudinal double-spin asymmetry, A(LL), for inclusive jet and dijet production in polarized proton-proton collisions at midrapidity and center-of-mass energy root s = 510 GeV, using the high luminosity data sample collected by the STAR experiment in 2013. These measurements complement and improve the precision of previous STAR measurements at the same center-of-mass energy that probe the polarized gluon distribution function at partonic momentum fraction 0.015 less than or similar to x less than or similar to 0.25. The dijet asymmetries are separated into four jet-pair topologies, which provide further constraints on the x dependence of the polarized gluon distribution function. These measurements are in agreement with previous STAR measurements and with predictions from current next-to-leading-order global analyses. They provide more precise data at low dijet invariant mass that will better constrain the shape of the polarized gluon distribution function of the proton
- …
