117 research outputs found

    PRL-3 promotes the motility, invasion, and metastasis of LoVo colon cancer cells through PRL-3-integrin β1-ERK1/2 and-MMP2 signaling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phosphatase of regenerating liver-3 (PRL-3) plays a causative role in tumor metastasis, but the underlying mechanisms are not well understood. In our previous study, we observed that PRL-3 could decrease tyrosine phosphorylation of integrin β1 and enhance activation of ERK1/2 in HEK293 cells. Herein we aim to explore the association of PRL-3 with integrin β1 signaling and its functional implications in motility, invasion, and metastasis of colon cancer cell LoVo.</p> <p>Methods</p> <p>Transwell chamber assay and nude mouse model were used to study motility and invasion, and metastsis of LoVo colon cancer cells, respectively. Knockdown of integrin β1 by siRNA or lentivirus were detected with Western blot and RT-PCR. The effect of PRL-3 on integrin β1, ERK1/2, and MMPs that mediate motility, invasion, and metastasis were measured by Western blot, immunofluorencence, co-immunoprecipitation and zymographic assays.</p> <p>Results</p> <p>We demonstrated that PRL-3 associated with integrin β1 and its expression was positively correlated with ERK1/2 phosphorylation in colon cancer tissues. Depletion of integrin β1 with siRNA, not only abrogated the activation of ERK1/2 stimulated by PRL-3, but also abolished PRL-3-induced motility and invasion of LoVo cells in vitro. Similarly, inhibition of ERK1/2 phosphorylation with U0126 or MMP activity with GM6001 also impaired PRL-3-induced invasion. In addition, PRL-3 promoted gelatinolytic activity of MMP2, and this stimulation correlated with decreased TIMP2 expression. Moreover, PRL-3-stimulated lung metastasis of LoVo cells in a nude mouse model was inhibited when integrin β1 expression was interfered with shRNA.</p> <p>Conclusion</p> <p>Our results suggest that PRL-3's roles in motility, invasion, and metastasis in colon cancer are critically controlled by the integrin β1-ERK1/2-MMP2 signaling.</p

    Site-specific axial oxygen coordinated FeN4 active sites for highly selective electroreduction of carbon dioxide

    Get PDF
    Altres ajuts: ICN2 and IREC were funded by the CERCA Programme/Generalitat de Catalunya.Regulating the coordination environment via heteroatoms to break the symmetrical electronic structure of M-N active sites provides a promising route to engineer metal-nitrogen-carbon catalysts for electrochemical CO reduction reaction. However, it remains challenging to realize a site-specific introduction of heteroatoms at atomic level due to their energetically unstable nature. Here, this paper reports a facile route via using an oxygen- and nitrogen-rich metal-organic framework (MOF) (IRMOF-3) as the precursor to construct the Fe-O and Fe-N chelation, simultaneously, resulting in an atomically dispersed axial O-coordinated FeN active site. Compared to the FeN active sites without O coordination, the formed FeN-O sites exhibit much better catalytic performance toward CO, reaching a maximum FE of 95% at −0.50 V versus reversible hydrogen electrode. To the best of the authors' knowledge, such performance exceeds that of the existing Fe-N-C-based catalysts derived from sole N-rich MOFs. Density functional theory calculations indicate that the axial O-coordination regulates the binding energy of intermediates in the reaction pathways, resulting in a smoother desorption of CO and increased energy for the competitive hydrogen production

    Soybean \u3ci\u3eGm\u3c/i\u3eSAUL1, a Bona Fide U-Box E3 Ligase, Negatively Regulates Immunity Likely through Repressing the Activation of \u3ci\u3eGm\u3c/i\u3eMPK3

    Get PDF
    E3 ubiquitin ligases play important roles in plant immunity, but their role in soybean has not been investigated previously. Here, we used Bean pod mottle virus (BPMV)-mediated virusinduced gene silencing (VIGS) to investigate the function of GmSAUL1 (Senescence-Associated E3 Ubiquitin Ligase 1) homologs in soybean. When two closely related SAUL1 homologs were silenced simultaneously, the soybean plants displayed autoimmune phenotypes, which were significantly alleviated by high temperature, suggesting that GmSAUL1a/1b might be guarded by an R protein. Interestingly, silencing GmSAUL1a/1b resulted in the decreased activation of GmMPK6, but increased activation of GmMPK3 in response to flg22, suggesting that the activation of GmMPK3 is most likely responsible for the activated immunity observed in the GmSAUL1a/1b-silenced plants. Furthermore, we provided evidence that GmSAUL1a is a bona fide E3 ligase. Collectively, our results indicated that GmSAUL1 plays a negative role in regulating cell death and immunity in soybean

    Genomic analyses provide insights into peach local adaptation and responses to climate change

    Get PDF
    The environment has constantly shaped plant genomes, but the genetic bases underlying how plants adapt to environmental influences remain largely unknown. We constructed a high-density genomic variation map of 263 geographically representative peach landraces and wild relatives. A combination of whole-genome selection scans and genome-wide environmental association studies (GWEAS) was performed to reveal the genomic bases of peach adaptation to diverse climates. A total of 2092 selective sweeps that underlie local adaptation to both mild and extreme climates were identified, including 339 sweeps conferring genomic pattern of adaptation to high altitudes. Using genome-wide environmental association studies (GWEAS), a total of 2755 genomic loci strongly associated with 51 specific environmental variables were detected. The molecular mechanism underlying adaptive evolution of high drought, strong UVB, cold hardiness, sugar content, flesh color, and bloom date were revealed. Finally, based on 30 yr of observation, a candidate gene associated with bloom date advance, representing peach responses to global warming, was identified. Collectively, our study provides insights into molecular bases of how environments have shaped peach genomes by natural selection and adds candidate genes for future studies on evolutionary genetics, adaptation to climate changes, and breeding.info:eu-repo/semantics/publishedVersio

    Combined Visualization of Nigrosome-1 and Neuromelanin in the Substantia Nigra Using 3T MRI for the Differential Diagnosis of Essential Tremor and de novo Parkinson's Disease

    Get PDF
    Differentiating early-stage Parkinson's disease (PD) from essential tremor (ET) remains challenging. In the current study, we aimed to evaluate whether visual analyses of neuromelanin-sensitive magnetic resonance imaging (NM-MRI) combined with nigrosome-1 (N1) imaging using quantitative susceptibility mapping (QSM) in the substantia nigra (SN) are of diagnostic value in the differentiation of de novo PD from untreated ET. Sixty-eight patients with de novo PD, 25 patients with untreated ET, and 34 control participants underwent NM-MRI and QSM. NM and N1 signals in the SN on MR images were visually evaluated using a 3-point ordinal scale. Receiver operating characteristic (ROC) analyses were performed to determine the diagnostic values of the visual ratings of NM and N1. The diagnostic values of the predicted probabilities were calculated via logistic regression analysis using the combination of NM and N1 visual ratings, as well as their quadratic items. The proportions of invisible NM and invisible N1 were significantly higher in the PD group than those in the ET and control groups (p &lt; 0.001). The sensitivity/specificity for differentiating PD from ET was 0.882/0.800 for NM and 0.794/0.920 for N1, respectively. Combining the two biomarkers, the area under the curve (AUC) of the predicted probabilities was 0.935, and the sensitivity/specificity was 0.853/0.920 when the cutoff value was set to 0.704. Our findings demonstrate that visual analyses combing NM and N1 imaging in the SN may aid in differential diagnosis of PD and ET. Furthermore, our results suggest that patients with PD exhibit larger iron deposits in the SN than those with ET

    Target density effects on charge tansfer of laser-accelerated carbon ions in dense plasma

    Full text link
    We report on charge state measurements of laser-accelerated carbon ions in the energy range of several MeV penetrating a dense partially ionized plasma. The plasma was generated by irradiation of a foam target with laser-induced hohlraum radiation in the soft X-ray regime. We used the tri-cellulose acetate (C9_{9}H16_{16}O8_{8}) foam of 2 mg/cm−3^{-3} density, and 11-mm interaction length as target material. This kind of plasma is advantageous for high-precision measurements, due to good uniformity and long lifetime compared to the ion pulse length and the interaction duration. The plasma parameters were diagnosed to be Te_{e}=17 eV and ne_{e}=4 ×\times 1020^{20} cm−3^{-3}. The average charge states passing through the plasma were observed to be higher than those predicted by the commonly-used semiempirical formula. Through solving the rate equations, we attribute the enhancement to the target density effects which will increase the ionization rates on one hand and reduce the electron capture rates on the other hand. In previsous measurement with partially ionized plasma from gas discharge and z-pinch to laser direct irradiation, no target density effects were ever demonstrated. For the first time, we were able to experimentally prove that target density effects start to play a significant role in plasma near the critical density of Nd-Glass laser radiation. The finding is important for heavy ion beam driven high energy density physics and fast ignitions.Comment: 7 pages, 4 figures, 35 conference

    Reduced expression of lamin A/C correlates with poor histological differentiation and prognosis in primary gastric carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lamin A/C is very important in DNA replication, RNA dependent transcription and nuclear stabilization. Reduced or absent lamin A/C expression has been found to be a common feature of a variety of different cancers. To investigate the role of lamin A/C in gastric carcinoma (GC) pathogenesis, we analyzed the correlations between the lamin A/C expression level and clinicopathological factors and studied its prognostic role in primary GC.</p> <p>Methods</p> <p>The expression of lamin A/C at mRNA level was detected by the reverse transcription-polymerase chain reaction (RT-PCR) and real time RT-PCR, and western blot was used to examine the protein expression. Lamin A/C expression and its prognostic significance were investigated by performing immunohistochemical analysis on a total of 126 GC clinical tissue samples.</p> <p>Results</p> <p>Both lamin A/C mRNA and protein expression were downregulated in the majority of tumours compared with corresponding normal gastric tissues (<it>p </it>= 0.011 and <it>p </it>= 0.036, respectively). Real time RT-PCR further validated that downregulation of lamin A/C is associated with poor histological differentiation (r = 0.438, <it>p </it>= 0.025). The immunohistochemical staining showed an evident decrease of lamin A/C expression in 55.6% (70/126) GC cases. Importantly, the negative lamin A/C expression correlated strongly with histological classification (r = 0.361, <it>p </it>= 0.034). Survival analysis revealed that patients with lamin A/C downregulation have a poorer prognosis (<it>p </it>= 0.034). In addition, lamin A/C expression was found to be an independent prognostic factor by multivariate analysis.</p> <p>Conclusion</p> <p>Data of this study suggest that lamin A/C is involved in the pathogenesis of GC, and it may serve as a valuable biomarker for assessing the prognosis for primary GC.</p

    Error control for wireless ad-hoc and sensor network localization

    No full text
    Location information is essential for a wide range of wireless ad-hoc and sensor network applications. A number of localization approaches have been proposed, most of which are based on inter-node distance. However, errors are inevitable in distance measurements and we observe that a small number of outliers can degrade localization accuracy drastically. In this thesis, we investigate a large body of existing approaches with focuses on error control, one rising aspect that attracts significant research interests in recent years. Error control aims to alleviate the negative impact of noisy ranging measurement and the error accumulation effect during cooperative localization process. We formally define the outlier detection problem for network localization and build a theoretical foundation to identify outliers based on graph embeddability and rigidity theory. Our analysis shows that the redundancy of distance measurements plays an important role. We then design an outlier detection algorithm based on bilateration generic cycles, and examine its effectiveness and efficiency through a network prototype of MicaZ motes. Extensive simulations are also conducted on the data sets from a real-world system. The results show that our design significantly improves the localization accuracy by wisely rejecting outliers
    • …
    corecore