82 research outputs found

    Future research and therapeutic applications of human stem cells: general, regulatory, and bioethical aspects

    Get PDF
    There is much to be investigated about the specific characteristics of stem cells and about the efficacy and safety of the new drugs based on this type of cells, both embryonic as adult stem cells, for several therapeutic indications (cardiovascular and ischemic diseases,diabetes, hematopoietic diseases, liver diseases). Along with recent progress in transference of nuclei from human somatic cells, as well as iPSC technology, has allowed availability of lineages of all three germ layers genetically identical to those of the donor patient, which permits safe transplantation of organ-tissue-specific adult stem cells with no immune rejection. The main objective is the need for expansion of stem cell characteristics to maximize stem cell efficacy (i.e. the proper selection of a stem cell) and the efficacy (maximum effect) and safety of stem cell derived drugs. Other considerations to take into account in cell therapy will be the suitability of infrastructure and technical staff, biomaterials, production costs, biobanks, biosecurity, and the biotechnological industry. The general objectives in the area of stem cell research in the next few years, are related to identification of therapeutic targets and potential therapeutic tests, studies of cell differentiation and physiological mechanisms, culture conditions of pluripotent stem cells and efficacy and safety tests for stem cellbased drugs or procedures to be performed in both animal and human models in the corresponding clinical trials. A regulatory framework will be required to ensure patient accessibility to products and governmental assistance for their regulation and control. Bioethical aspects will be required related to the scientific and therapeutic relevance and cost of cryopreservation over time, but specially with respect to embryos which may ultimately be used for scientific uses of research as source of embryonic stem cells, in which case the bioethical conflict may be further aggravated

    The variant Creutzfeldt-Jakob Disease: Risk, uncertainty or safety in the use of blood and blood derivatives?

    Get PDF
    It has been long since French physician Jean-Baptiste Denys carried out the first successful blood transfusion to a human being. Using bird feathers as canules, sheep blood was transfused to a young man. The patient died soon after Denys' treatment and Denys was accused of murder. In the XXI century, known as the biotechnology century, we face new challenges in Medicine. New emerging and reemerging diseases, such as Creutzfeldt-Jakob disease (CJD) or "mad cow disease" and its human variant (vCJD), challenge the biosafety aspects of a widely extended and extremely useful technique, that is, the perfusion of blood, of its derived components and of other pharmacological products obtained from plasma. To face these new challenges we need innovative prevention strategies

    Bioethics in biomedicine in the context of a global higher education area

    Get PDF
    The University is tasked with drawing together, transmitting and maintaining knowledge, while creating an area where the ethical "sense" required for working in the field of Biology and Biomedicine can be provided. Although scientific knowledge is present on an overwhelming scale in nature and, therefore, its discovery is unceasing, this does not mean that, as a human being, the researcher has no limitations. It is Bioethics that sets this limit. The successful spreading of knowledge, therefore, which is proclaimed with the creation of a Global Higher Education Area, should also pursue the establishment of the bioethical principles necessary for the credibility of science and its progress so that the society that it promotes and sustains becomes a reality

    Advanced therapies for the treatment of hemophilia: future perspectives

    Get PDF
    Monogenic diseases are ideal candidates for treatment by the emerging advanced therapies, which are capable of correcting alterations in protein expression that result from genetic mutation. In hemophilia A and B such alterations affect the activity of coagulation factors VIII and IX, respectively, and are responsible for the development of the disease. Advanced therapies may involve the replacement of a deficient gene by a healthy gene so that it generates a certain functional,structural or transport protein (gene therapy); the incorporation of a full array of healthy genes and proteins through perfusion or transplantation of healthy cells (cell therapy); or tissue transplantation and formation of healthy organs (tissue engineering). For their part, induced pluripotent stem cells have recently been shown to also play a significant role in the fields of cell therapy and tissue engineering.Hemophilia is optimally suited for advanced therapies owing to the fact that, as a monogenic condition, it does not require very high expression levels of a coagulation factor to reach moderate disease status. As a result, significant progress has been possible with respect to these kinds of strategies, especially in the fields of gene therapy (by using viral and non-viral vectors) and cell therapy (by means of several types of target cells). Thus, although still considered a rare disorder, hemophilia is now recognized as a condition amenable to gene therapy, which can be administered in the form of lentiviral and adeno-associated vectors applied to adult stem cells, autologous fibroblasts, platelets and hematopoietic stem cells; by means of non-viral vectors; or through the repair of mutations by chimeric oligonucleotides. In hemophilia, cell therapy approaches have been based mainly on transplantation of healthy cells (adult stem cells or induced pluripotent cell-derived progenitor cells)in order to restore alterations in coagulation factor expression

    Induced Pluripotent Stem Cells: Therapeutic Applications in Monogenic and Metabolic Diseases, and Regulatory and Bioethical Considerations

    Get PDF
    Depto. de Genética, Fisiología y MicrobiologíaFac. de Ciencias BiológicasTRUEpu

    Dental management of patients with haemophilia in the era of recombinant treatments: increased efficacy and decreased clinical risk

    Get PDF
    Haemophilia is a hereditary X-linked recessive disorder caused by a deficiency of either clotting factor VIII (haemophilia A) or IX (haemophilia B). Conventional treatment is currently based on the use of either plasma derived or recombinant coagulation factors. This paper reports on the case of a patient with severe haemophilia who presented with mesial decay and interproximal tartar build-up, for which extraction and scaling to remove tartar deposits were indicated. Following extraction, the usual haemostasis techniques were applied, and postoperative prophylactic antihaemophilic treatment was indicated for 2 or 3 days. The patient presented with moderate bleeding for a few minutes immediately after the procedure. Administration of factor VIII before surgery as well as the patient’s favourable pharmacokinetic response allowed for an optimal result. This treatment has afforded patients with haemophilia a better quality of life, and safe and efficient access to invasive surgical procedures

    Protein tyrosine phosphatase activity modulation by endothelin-1 in rabbit platelets

    Get PDF
    AbstractProtein tyrosine phosphorylation, modulated by the rate of both protein tyrosine kinase and protein tyrosine phosphatase activities, is critical for cellular signal transduction cascades. We report that endothelin-1 stimulation of rabbit platelets resulted in a dose- and time-dependent tyrosine phosphorylation of four groups of proteins in the molecular mass ranges of 50, 60, 70–100 and 100–200 kDa and that one of these corresponds to focal adhesion kinase. This effect is also related to the approximately 60% decrease in protein tyrosine phosphatase activity. Moreover, this inhibited activity was less sensitive to orthovanadate. In the presence of forskolin that increases the cAMP level a dose-dependent inhibition of the endothelin-stimulated tyrosine phosphorylation of different protein substrates and a correlation with an increase in the protein tyrosine phosphatase activity (11.6-fold compared to control) have been found. Further studies by immunoblotting of immunoprecipitated soluble fraction with anti-protein tyrosine phosphatase-1C from endothelin-stimulated platelets have demonstrated that the tyrosine phosphorylation of platelet protein tyrosine phosphatase-1C is correlated with the decrease in its phosphatase activity. As a consequence, modulation and regulation by endothelin-1 in rabbit platelets can be proposed through a cAMP-dependent pathway and a tyrosine phosphorylation process that may affect some relevant proteins such as focal adhesion kinase

    Preliminary study on non-viral transfection of F9 (factor IX) gene by nucleofection in human adipose-derived mesenchymal stem cells

    Get PDF
    Background. Hemophilia is a rare recessive X-linked disease characterized by a deficiency of coagulation factor VIII or factor IX. Its current treatment is merely palliative. Advanced therapies are likely to become the treatment of choice for the disease as they could provide a curative treatment. Methods. The present study looks into the use of a safe non-viral transfection method based on nucleofection to express and secrete human clotting factor IX (hFIX) where human adipose tissue derived mesenchymal stem cells were used as target cells in vitro studies and NOD. Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice were used to analyze factor IX expression in vivo studies. Previously, acute liver injury was induced by an injected intraperitoneal dose of 500 mg/kg body weight of acetaminophen. Results. Nucleofection showed a percentage of positive cells ranging between 30.7% and 41.9% and a cell viability rate of 29.8%, and cells were shown to secrete amounts of hFIX between 36.8 and 71.9 ng/mL. hFIX levels in the blood of NSG mice injected with ASCs transfected with this vector, were 2.7 ng/mL 48 h after injection. Expression and secretion of hFIX were achieved both in vitro cell culture media and in vivo in the plasma of mice treated with the transfected ASCs. Such cells are capable of eventually migrating to a previously damaged target tissue (the liver) where they secrete hFIX, releasing it to the bloodstream over a period of at least five days from administration. Conclusions. The results obtained in the present study may form a preliminary basis for the establishment of a future ex vivo non-viral gene/cellular safe therapy protocol that may eventually contribute to advancing the treatment of hemophilia

    A significantly improved polymer||Ni(OH)2 alkaline rechargeable battery using anthraquinone-based conjugated microporous polymer anode

    Get PDF
    Alkaline rechargeable batteries (ARBs) are predicted to be an attractive solution for large-scale electrochemical energy storage applications. However, their advancement is greatly hindered by the lack of high-performance and sustainable anode that can stably operate in less-corroding, low electrolyte concentration. Herein, we report the first example of polymer ARB able to operate in low concentrate electrolyte (1м potassium hydroxide [KOH]) due to the employment of a robust anthraquinone-based conjugated microporous polymer (IEP-11) as anode. The assembled IEP-11||Ni(OH)2 achieves high cell voltage (0.98 V), high gravimetric/areal capacities (150 mAh/g/7.2 mAh/cm2 at 3.5 and 65 mg/cm2, respectively), long cycle life (22,730 cycles, 960 h, 75% capacity retention at 20C), excellent rate performance (75 mAh/g at 50C) and low temperature operativity (75 mAh/g at −10 \ub0C). Furthermore, rate capability, low-temperature performance and ability to prepare high mass loading anodes, along with low self-discharge is improved compared to conventional linear poly (anthraquinone sulfide) (PAQS) in commonly used 10 м KOH. This overall performance for IEP-11||Ni(OH)2 is not only far superior to that of PAQS||Ni(OH)2 owing to porous polymer\u27s high specific surface area, combined micro-/mesoporosity and robust and mechanically stable three-dimensional (3D) architecture compared to the linear PAQS, but also surpass most of the reported organic||nickel [Ni]/cobalt [Co]/manganese [Mn] alkaline rechargeable batteries (ARBs)

    Two proteins with ornithine acetyltransferase activity show different functions in Streptomyces clavuligerus: Oat2 modulates clavulanic acid biosynthesis in response to arginine

    Get PDF
    [EN] The oat2 gene, located in the clavulanic acid gene cluster in Streptomyces clavuligerus, is similar to argJ, which encodes N-acetylornithine:glutamic acid acetyltransferase activity. Purified proteins obtained by expression in Escherichia coli of the argJ and oat2 genes of S. clavuligerus posses N-acetyltransferase activity. The kinetics and substrate specificities of both proteins are very similar. Deletion of the oat2 gene did not affect the total N-acetylornithine transferase activity and slightly reduced the formation of clavulanic acid under standard culture conditions. However, the oat2 mutant produced more clavulanic acid than the parental strain in cultures supplemented with high levels (above 1 mM) of arginine. The purified S. clavuligerus ArgR protein bound the arginine box in the oat2 promoter, and the expression of oat2 was higher in mutants with a disruption in argR (arginine-deregulated), confirming that the Arg boxes of oat2 are functional in vivo. Our results suggest that the Oat2 protein or one of its reaction products has a regulatory role that modulates clavulanic acid biosynthesis in response to high arginine concentrationsSIThis work was supported by grant BIO2000-272 and a fellowship (to A. de la Fuente) from the Spanish Ministry of Science and Technology (Madrid, Spain). We thank Rosario Pérez-Redondo for her help with RNA experiments
    corecore