14 research outputs found

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset

    Evidence for a Highly Dynamic West Antarctic Ice Sheet During the Pliocene

    Get PDF
    Major ice loss in the Amundsen Sea sector of the West Antarctic Ice Sheet (WAIS) is hypothesized to have triggered ice sheet collapses during past warm periods such as those in the Pliocene. International Ocean Discovery Program (IODP) Expedition 379 recovered continuous late Miocene to Holocene sediments from a sediment drift on the continental rise, allowing assessment of sedimentation processes in response to climate cycles and trends since the late Miocene. Via seismic correlation to the shelf, we interpret massive prograding sequences that extended the outer shelf by 80 km during the Pliocene through frequent advances of grounded ice. Buried grounding zone wedges indicate prolonged periods of ice-sheet retreat, or even collapse, during an extended mid-Pliocene warm period from ∌4.2– 3.2 Ma inferred from Expedition 379 records. These results indicate that the WAIS was highly dynamic during the Pliocene and major retreat events may have occurred along the Amundsen Sea margin

    Glacial connectivity and current population fragmentation in sky islands explain the contemporary distribution of genomic variation in two narrow‐endemic montane grasshoppers from a biodiversity hotspot

    No full text
    Aim: Cold-adapted biotas from mid-latitudes often show small population sizes, harbour low levels of local genetic diversity and are highly vulnerable to extinction due to ongoing climate warming and the progressive shrinking of montane and alpine ecosystems. In this study, we use a suite of analytical approaches to infer the demographic processes that have shaped contemporary patterns of genomic variation in Omocestus bolivari and Omocestus femoralis, two narrow-endemic and red-listed Iberian grasshoppers forming highly fragmented populations in the sky island archipelago of the Baetic System. Location: South-eastern Iberia. Methods: We quantified genomic variation in the two focal taxa and coupled ecological niche models and a spatiotemporally explicit simulation approach based on coalescent theory to determine the relative statistical support of a suite of competing demographic scenarios representing contemporary population isolation (i.e. a predominant role of genetic drift) versus historical connectivity and post-glacial colonization of sky islands (i.e. pulses of gene flow and genetic drift linked to Pleistocene glacial cycles). Results: Inference of spatial patterns of genetic structure, environmental niche modelling and statistical evaluation of alternative species-specific demographic models within an approximate Bayesian computation framework collectively supported genetic admixture during glacial periods and post-glacial colonization of sky islands, rather than long-term population isolation, as the scenario best explaining the current distribution of genomic variation in the two focal taxa. Moreover, our analyses revealed that isolation in sky islands has also led to extraordinary genetic fragmentation and contributed to reduce local levels of genetic diversity. Main conclusions: This study exemplifies the potential of integrating genomic and environmental niche modelling data across biological and spatial replicates to determine whether organisms with similar habitat requirements have experienced concerted/idiosyncratic responses to Quaternary climatic oscillations, which can ultimately help to reach more general conclusions about the vulnerability of mountain biodiversity hotspots to ongoing climate warmingPeer reviewe

    Rice (Oryza) hemoglobins

    No full text

    Rice (Oryza) hemoglobins

    No full text

    The therapeutic lead potential of metabolites obtained from natural sources for the treatment of peptic ulcer

    No full text
    corecore