151 research outputs found

    Clinical utility of urine kidney injury molecule-1 (KIM-1) and gamma-glutamyl transferase (GGT) in the diagnosis of canine acute kidney injury

    Get PDF
    The aim of the present study was to evaluate the sensitivity and specificity of urine KIM-1 and urine GGT for the detection of naturally-occurring AKI, compared to healthy control dogs, dogs with stable chronic kidney disease (CKD), and dogs with lower urinary tract disorders (LUTD). The study included AKI grade 1 (n = 21), AKI grade 2 to 5 (n = 11), stable CKD (n = 11), LUTD (n = 15), and healthy dogs (n = 37). Urine KIM-1 (ng/mg) and GGT (U/l) were normalized to urine creatinine (uCr). Statistically significant difference in KIM/uCr (p = 0.0007) and GGT/uCr (p < 0.0001) was found among the study groups. Area under the curve (AUC) for KIM-1/uCr and GGT/uCr as predictors of AKI was 0.81 and 0.91 respectively. Values of KIM-1/uCr of 0.73 ng/mg and of GGT/uCr of 54.33 showed the best combination of sensitivity and specificity (75% and 75.6%; 85.7% and 89.1% respectively). A significant positive correlation (p < 0.0001) between KIM-1/uCr and GGT/uCr was found. Both urine KIM-1/uCr and GGT/uCr seemed to be potentially good markers for the diagnosis of AKI. Dogs with AKI showed significantly higher levels of urine KIM-1/uCr and urine GGT/uCr, compared with healthy dogs. Caution should be used in the evaluation of elevated urine KIM-1/uCr and GGT/uCr in dogs with pre-existing CKD and/or LUTD. Urine KIM-1/uCr and GGT/uCr might have a significant clinical utility, as complementary test, particularly in diagnosis early, non-azotemic stages of AKI

    A 28,000 Years Old Cro-Magnon mtDNA Sequence Differs from All Potentially Contaminating Modern Sequences

    Get PDF
    Background: DNA sequences from ancient speciments may in fact result from undetected contamination of the ancient specimens by modern DNA, and the problem is particularly challenging in studies of human fossils. Doubts on the authenticity of the available sequences have so far hampered genetic comparisons between anatomically archaic (Neandertal) and early modern (Cro-Magnoid) Europeans. Methodology/Principal Findings: We typed the mitochondrial DNA (mtDNA) hypervariable region I in a 28,000 years old Cro-Magnoid individual from the Paglicci cave, in Italy (Paglicci 23) and in all the people who had contact with the sample since its discovery in 2003. The Paglicci 23 sequence, determined through the analysis of 152 clones, is the Cambridge reference sequence, and cannot possibly reflect contamination because it differs from all potentially contaminating modern sequences. Conclusions/Significance:: The Paglicci 23 individual carried a mtDNA sequence that is still common in Europe, and which radically differs from those of the almost contemporary Neandertals, demonstrating a genealogical continuity across 28,000 years, from Cro-Magnoid to modern Europeans. Because all potential sources of modern DNA contamination are known, the Paglicci 23 sample will offer a unique opportunity to get insight for the first time into the nuclear genes of earl

    A Preliminary Proposal for Quality Control Assessment and Harmonization of Leukocytes Morphology-Structural Parameters (Cell Population Data Parameters)

    Get PDF
    Background: The cell population data (CPD) measured by Sysmex XN-9000 can be used for screening many hematological and non-hematological disorders. Since little information is available on harmonization of CPD among different instrumentation and clinical laboratories, this study aimed at assessing the current degree of CPD harmonization between separate Sysmex XN modules allocated to the same laboratory.Methods: A total number of 78291 data were used for verification of within-run imprecision, analyzers harmonization, reference ranges and assessment of blood sample stability of CPD parameters, including results of daily quality control testing and those generated in samples collected from blood donors and healthy volunteers.Results: Within-run imprecision of CPD parameters ranged between 0.4 and 14.1%. Good agreement was found among five different XN-modules, especially when values were adjusted after calculation of instrument-specific alignment factors. The bias of all parameters remained always lower than the reference change values in samples stored for up to 8 hours, regardless of storage temperature.Conclusions: The imprecision of CPD parameters was acceptable, except for those reflecting the dispersion of cellular clusters. Due to the lack of reference control materials, we showed that the use of data generated on a large number of normal routine samples (i.e., a Moving Average population) may be a reliable approach for testing analyzers harmonization. Nevertheless, availability of both calibration and quality control materials for these parameters is highly advisable in the future. We finally showed that whole blood samples may be stable for up to 2-4 hours for most CPD parameters

    Implementation and performances of the IPbus protocol for the JUNO Large-PMT readout electronics

    Full text link
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large neutrino detector currently under construction in China. Thanks to the tight requirements on its optical and radio-purity properties, it will be able to perform leading measurements detecting terrestrial and astrophysical neutrinos in a wide energy range from tens of keV to hundreds of MeV. A key requirement for the success of the experiment is an unprecedented 3% energy resolution, guaranteed by its large active mass (20 kton) and the use of more than 20,000 20-inch photo-multiplier tubes (PMTs) acquired by high-speed, high-resolution sampling electronics located very close to the PMTs. As the Front-End and Read-Out electronics is expected to continuously run underwater for 30 years, a reliable readout acquisition system capable of handling the timestamped data stream coming from the Large-PMTs and permitting to simultaneously monitor and operate remotely the inaccessible electronics had to be developed. In this contribution, the firmware and hardware implementation of the IPbus based readout protocol will be presented, together with the performances measured on final modules during the mass production of the electronics

    Mass testing of the JUNO experiment 20-inch PMTs readout electronics

    Full text link
    The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose, large size, liquid scintillator experiment under construction in China. JUNO will perform leading measurements detecting neutrinos from different sources (reactor, terrestrial and astrophysical neutrinos) covering a wide energy range (from 200 keV to several GeV). This paper focuses on the design and development of a test protocol for the 20-inch PMT underwater readout electronics, performed in parallel to the mass production line. In a time period of about ten months, a total number of 6950 electronic boards were tested with an acceptance yield of 99.1%

    Validation and integration tests of the JUNO 20-inch PMTs readout electronics

    Full text link
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large neutrino detector currently under construction in China. JUNO will be able to study the neutrino mass ordering and to perform leading measurements detecting terrestrial and astrophysical neutrinos in a wide energy range, spanning from 200 keV to several GeV. Given the ambitious physics goals of JUNO, the electronic system has to meet specific tight requirements, and a thorough characterization is required. The present paper describes the tests performed on the readout modules to measure their performances.Comment: 20 pages, 13 figure

    Neutrino Physics with JUNO

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purposeunderground liquid scintillator detector, was proposed with the determinationof the neutrino mass hierarchy as a primary physics goal. It is also capable ofobserving neutrinos from terrestrial and extra-terrestrial sources, includingsupernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos,atmospheric neutrinos, solar neutrinos, as well as exotic searches such asnucleon decays, dark matter, sterile neutrinos, etc. We present the physicsmotivations and the anticipated performance of the JUNO detector for variousproposed measurements. By detecting reactor antineutrinos from two power plantsat 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4sigma significance with six years of running. The measurement of antineutrinospectrum will also lead to the precise determination of three out of the sixoscillation parameters to an accuracy of better than 1\%. Neutrino burst from atypical core-collapse supernova at 10 kpc would lead to ~5000inverse-beta-decay events and ~2000 all-flavor neutrino-proton elasticscattering events in JUNO. Detection of DSNB would provide valuable informationon the cosmic star-formation rate and the average core-collapsed neutrinoenergy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400events per year, significantly improving the statistics of existing geoneutrinosamples. The JUNO detector is sensitive to several exotic searches, e.g. protondecay via the pK++νˉp\to K^++\bar\nu decay channel. The JUNO detector will providea unique facility to address many outstanding crucial questions in particle andastrophysics. It holds the great potential for further advancing our quest tounderstanding the fundamental properties of neutrinos, one of the buildingblocks of our Universe

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure
    corecore