55 research outputs found

    Death of three Loop Current rings

    Get PDF
    The life cycle of large anticyclonic rings in the Gulf of Mexico (GOM) is widely described by pinch off from the Loop Current, migration across the Gulf and eventual spin down along the western slope. Extensive observational and modeling efforts provide a relatively consistent picture of rings pinching off from the Loop Current and of complex interaction between anticyclones and cyclones driven by bathymetry along the western and northwestern shelf. The observational record for Loop Current rings (LCRs) during the intermediate period of westward translation is less clear. A number of studies recognize distinct anomalies in LCR characteristics in deep water as the rings enter the western Gulf near 92-94W. These include abrupt changes in the geometry of observed drifter trajectories and derived eddy parameter fits as well as changes in both ring translation speeds and the estimated rate of ring decay. Such observations are consistent with intense interaction and mass exchange between the rings and other coherent mesoscale features known to be present in the western Gulf. We test the hypothesis that interactions with the ambient mesoscale field can lead to rapid loss of coherence of some LCRs well before they reach the \u27eddy graveyard\u27 in the western Gulf. We use the data-assimilating, eddy-resolving numerical GOM model described by Kantha et al. (2005) to assess the fates of readily identified LCRs Fourchon, Juggernaut, and Millenium during the period July 1998 to August 2001. Lagrangian metrics, including relative dispersion of small drifter clusters seeded in the ring cores, analysis of evolving blobs seeded in the ring cores, and finite-scale Lyapunov exponents, are used to track model ring evolution. These metrics clearly show that interactions with existing mesoscale cyclones and anticyclones caused Fourchon and Juggernaut to break up near 92W on advective time scales. In addition, Millenium also experienced an intense deformation, stirring, and mixing episode near 92W. Blob studies showed that the core fluid of Millenium was ultimately dispersed over much of the western basin. Our results show that some LCRs may break up through interactions with existing western Gulf cyclones and anticyclones prior to reaching the western slope

    Blending HF Radar and Model Velocities in Monterey Bay Through Normal Mode Analysis

    Get PDF
    Nowcasts of the surface velocity field in Monterey Bay are made for the period August 1-9, 1994, using HF radar observations blended with results from a primitive equation model. A spectral method called normal mode analysis was used. Objective spatial and temporal filtering were performed, and stream function, velocity potential, relative vorticity, and horizontal divergence were calculated over the domain. This type of nowcasting permits global spectral analysis of mode amplitudes, calculation of enstrophy, and additional analyses using tools like empirical orthogonal functions. The nowcasts reported here include open boundary flow information from the numerical model. Nowcasts using no open boundary flow information, however, still provide excellent results for locations within the observation footprint. This method, then, is useful for filtering high-resolution data like HF radar observations, even when open boundary flow information is unavailable. Also, since the nowcast velocity gradient fields were much less noisy than the observations, this may be an effective method for preconditioning high-resolution observation sets for assimilation into a numerical model. Copyright 2000 by the American Geophysical Union

    Synoptic Lagrangian maps: Application to surface transport in Monterey Bay

    Get PDF
    Here we report on an effort to describe in detail the evolution of surface water particles in Monterey Bay from the time they first enter until the time they leave. The data used for this study are objective mappings from hourly surface currents obtained from high frequency (HF) radar measurements in Monterey Bay for the period 2 June through 4 August 1999. The basic concept is simple: compute the origin and fate of a large number of particles for every hour during the analysis period. However, analyzing and displaying the enormous amount of computed trajectory information required a new data compression technique: synoptic Lagrangian maps produced by representing each trajectory by its origin/fate and its residence time. The results show unexpected complexity and variability not apparent in the Eulerian current archive. For example, the fraction of particles that escaped to the open ocean during this period varied from about 17 to more than 92 percent. Mean particle residence times ranged from 4.5 to 11 days. The distribution of particle residence times and transport pathways varied over time scales from hours to weeks, and space scales from 2 to 40 km. The wide range of variability in particle properties reported here shows that surface transport studies in Monterey Bay require detailed wind and tidal current information over the entire bay, as well as information about the flow along the open ocean boundary

    Reconstructing Basin-Scale Eulerian Velocity Fields From Simulated Drifter Data

    Get PDF
    A single-layer, reduced-gravity, double-gyre primitive equation model in a 2000 km x 2000 km square domain is used to test the accuracy and sensitivity of time-dependent Eulerian velocity fields reconstructed from numerically generated drifter trajectories and climatology. The goal is to determine how much Lagrangian data is needed to capture the Eulerian velocity field within a specified accuracy. The Eulerian fields are found by projecting, on an analytic set of divergence-free basis functions, drifter data launched in the active western half of the basin supplemented by climatology in the eastern domain. The time-dependent coefficients are evaluated by least squares minimization and the reconstructed fields are compared to the original model output. The authors find that the accuracy of the reconstructed fields depends critically on the spatial coverage of the drifter observations. With good spatial coverage, the technique allows accurate Eulerian reconstructions with under 200 drifters deployed in the 1000 km x 1400 km energetic western region. The base reconstruction error, achieved with full observation of the velocity field, ranges from 5% (with 191 basis functions) to 30% (with 65 basis functions). Specific analysis of the relation between spatial coverage and reconstruction error is presented using 180 drifters deployed in 100 different initial configurations that maximize coverage extremes. The simulated drifter data is projected on 107 basis functions for a 50-day period. The base reconstruction error of 15% is achieved when drifters occupy approximately 110 (out of 285) 70-km cells in the western region. Reconstructions from simulated mooring data located at the initial positions of representative good and poor coverage drifter deployments show the effect drifter dispersion has on data voids. The authors conclude that with appropriate coverage, drifter data could provide accurate basin-scale reconstruction of Eulerian velocity fields

    Coulomb energy contribution to the excitation energy in 229^{229}Th and enhanced effect of α\alpha variation

    Full text link
    We calculated the contribution of Coulomb energy to the spacing between the ground and first excited state of 229^{229}Th nucleus as a function of the deformation parameter δ\delta. We show that despite the fact that the odd particle is a neutron, the change in Coulomb energy between these two states can reach several hundreds KeV.This means that the effect of the variation of the fine structure constant α=e2/c\alpha=e^2/\hbar c may be enhanced ΔUC/E104\Delta U_C/E \sim 10^4 times in the E=E=7.6 eV "nuclear clock" transition between the ground and first excited states in the 229^{229}Th nucleus.Comment: 6 pages,2 figure

    Phase- coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link

    Get PDF
    We have explored the performance of two "dark fibers" of a commercial telecommunication fiber link for a remote comparison of optical clocks. The two fibers, linking the Leibniz University of Hanover (LUH) with the Physi-kalisch-Technische Bundesanstalt (PTB) in Braunschweig, are connected in Hanover to form a total fiber length of 146 km. At PTB the performance of an optical frequency standard operating at 456 THz was imprinted to a cw trans-fer laser at 194 THz, and its frequency was transmitted over the fiber. In order to detect and compensate phase noise related to the optical fiber link we have built a low-noise optical fiber interferometer and investigated noise sources that affect the overall performance of the optical link. The frequency stability at the remote end has been measured using the clock laser of PTB's Yb+ frequency standard operating at 344 THz. We show that the frequency of a frequency-stabilized fiber laser can be transmitted over a total fiber length of 146 km with a relative frequency uncertainty below 1E-19, and short term frequency instability given by the fractional Allan deviation of sy(t)=3.3E-15/(t/s)

    Integrable unsteady motion with an application to ocean eddies

    No full text
    Application of the Brown-Samelson theorem, which shows that particle motion is integrable in a class of vorticity-conserving, two-dimensional incompressible flows, is extended here to a class of explicit time dependent dynamically balanced flows in multilayered systems. Particle motion for nonsteady two-dimensional flows with discontinuities in the vorticity or potential vorticity fields (modon solutions) is shown to be integrable. An example of a two-layer modon solution constrained by observations of a Gulf Stream ring system is discussed

    Dickkopf-3 in Aberrant Endothelial Secretome Triggers Renal Fibroblast Activation and Endothelial-Mesenchymal Transition

    No full text
    Background: Our laboratory has previously demonstrated that Sirt1endo-/- mice show endothelial dysfunction and exaggerated renal fibrosis, whereas mice with silenced endothelial transforming growth factor beta (TGF-beta) signaling are resistant to fibrogenic signals. Considering the fact that the only difference between these mutant mice is confined to the vascular endothelium, this indicates that secreted substances contribute to these contrasting responses. Methods: We performed an unbiased proteomic analysis of the secretome of renal microvascular endothelial cells (RMVECs) isolated from these two mutants. We cultured renal fibroblasts and RMVECs and used microfluidic devices for coculturing. Results: Dickkopf-3 (DKK3), a putative ligand of the Wnt/beta-catenin pathway, was present exclusively in the fibrogenic secretome. In cultured fibroblasts, DKK3 potently induced myofibroblast activation. In addition, DKK3 antagonized effects of DKK1, a known inhibitor of the Wnt pathway, in conversion of fibroblasts to myofibroblasts. In RMVECs, DKK3 induced endothelial-mesenchymal transition and impaired their angiogenic competence. The inhibition of endothelial outgrowth, enhanced myofibroblast formation and endothelial-mesenchymal transition were confirmed in coculture. In reporter DKK3-eGFP x Col3.6-GFPcyan mice, DKK3 was marginally expressed under basal conditions. Adriamycin-induced nephropathy resulted in upregulation of DKK3 expression in tubular and, to a lesser degree, endothelial compartments. Sulindac sulfide was found to exhibit superior Wnt pathway-suppressive action and decreased DKK3 signals and the extent of renal fibrosis. Conclusions: In conclusion, this unbiased proteomic screen of the profibrogenic endothelial secretome revealed DKK3 acting as an agonist of the Wnt pathway, enhancing formation of myofibroblasts and endothelial-mesenchymal transition and impairing angiogenesis. A potent inhibitor of the Wnt pathway, sulindac sulfide, suppressed nephropathy-induced DKK3 expression and renal fibrosis
    corecore