37 research outputs found

    Magnetic dipole and electric quadrupole responses of elliptic quantum dots in magnetic fields

    Full text link
    The magnetic dipole (M1) and electric quadupole (E2) responses of two-dimensional quantum dots with an elliptic shape are theoretically investigated as a function of the dot deformation and applied static magnetic field. Neglecting the electron-electron interaction we obtain analytical results which indicate the existence of four characteristic modes, with different BB-dispersion of their energies and associated strengths. Interaction effects are numerically studied within the time-dependent local-spin-density theory, assessing the validity of the non-interacting picture.Comment: 11 pages, 3 GIF figure

    Spin-orbit effects on the Larmor dispersion relation in GaAs quantum wells

    Get PDF
    We have studied the relevance of spin-orbit coupling to the dispersion 00009 relation of the Larmor resonance observed in inelastic light scattering and electron-spin resonance experiments on GaAs quantum wells. We show that the spin-orbit interaction, here described by a sum of Dresselhaus and Bychkov-Rashba terms, couples Zeeman and spin-density excitations. We have evaluated its contribution to the spin splitting as a function of the magnetic field BB, and have found that in the small BB limit, the spin-orbit interaction does not contribute to the spin splitting, whereas at high magnetic fields it yields a BB independent contribution to the spin splitting given by 2(λR2λD2)2(\lambda_R^2-\lambda_D^2), with λR,D\lambda_{R,D} being the intensity of the Bychkov-Rashba and Dresselhaus spin-orbit terms.Comment: To be published in Physical Review

    Satisfiability of Non-Linear Transcendental Arithmetic as a Certificate Search Problem

    Full text link
    For typical first-order logical theories, satisfying assignments have a straightforward finite representation that can directly serve as a certificate that a given assignment satisfies the given formula. For non-linear real arithmetic with transcendental functions, however, no general finite representation of satisfying assignments is available. Hence, in this paper, we introduce a different form of satisfiability certificate for this theory, formulate the satisfiability verification problem as the problem of searching for such a certificate, and show how to perform this search in a systematic fashion. This does not only ease the independent verification of results, but also allows the systematic design of new, efficient search techniques. Computational experiments document that the resulting method is able to prove satisfiability of a substantially higher number of benchmark problems than existing methods

    Orbital current mode in elliptical quantum dots

    Full text link
    An orbital current mode peculiar to deformed quantum dots is theoretically investigated; first by using a simple model that allows to interpret analytically its main characteristics, and second, by numerically solving the microscopic equations of time evolution after an initial perturbation within the time-dependent local-spin-density approximation. Results for different deformations and sizes are shown.Comment: 4 REVTEX pages, 4 PDF figures, accepted in PRB:R

    Wave-vector dependence of spin and density multipole excitations in quantum dots

    Get PDF
    We have employed time-dependent local-spin density functional theory to analyze the multipole spin and charge density excitations in GaAs-AlGaAs quantum dots. The on-plane transferred momentum degree of freedom has been taken into account, and the wave-vector dependence of the excitations is discussed. In agreement with previous experiments, we have found that the energies of these modes do not depend on the transferred wave-vector, although their intensities do. Comparison with a recent resonant Raman scattering experiment [C. Sch\"uller et al, Phys. Rev. Lett {\bf 80}, 2673 (1998)] is made. This allows to identify the angular momentum of several of the observed modes as well as to reproduce their energies.Comment: 14 pages in REVTEX and 14 postscript figure

    Wave-vector dependence of spin and density multipole excitations in quantum dots

    Get PDF
    We have employed time-dependent local-spin density functional theory to analyze the multipole spin and charge density excitations in GaAs-AlGaAs quantum dots. The on-plane transferred momentum degree of freedom has been taken into account, and the wave-vector dependence of the excitations is discussed. In agreement with previous experiments, we have found that the energies of these modes do not depend on the transferred wave-vector, although their intensities do. Comparison with a recent resonant Raman scattering experiment [C. Sch\"uller et al, Phys. Rev. Lett {\bf 80}, 2673 (1998)] is made. This allows to identify the angular momentum of several of the observed modes as well as to reproduce their energies.Comment: 14 pages in REVTEX and 14 postscript figure

    Spin-orbit effects in GaAs quantum wells: Interplay between Rashba, Dresselhaus, and Zeeman interactions

    Get PDF
    The interplay between Rashba, Dresselhaus and Zeeman interactions in a quantum well submitted to an external magnetic field is studied by means of an accurate analytical solution of the Hamiltonian, including electron-electron interactions in a sum rule approach. This solution allows to discuss the influence of the spin-orbit coupling on some relevant quantities that have been measured in inelastic light scattering and electron-spin resonance experiments on quantum wells. In particular, we have evaluated the spin-orbit contribution to the spin splitting of the Landau levels and to the splitting of charge- and spin-density excitations. We also discuss how the spin-orbit effects change if the applied magnetic field is tilted with respect to the direction perpendicular to the quantum well.Comment: 26 pages (with 3 figures included

    Multipole modes and spin features in the Raman spectrum of nanoscopic quantum rings

    Full text link
    We present a systematic study of ground state and spectroscopic properties of many-electron nanoscopic quantum rings. Addition energies at zero magnetic field (B) and electrochemical potentials as a function of B are given for a ring hosting up to 24 electrons. We find discontinuities in the excitation energies of multipole spin and charge density modes, and a coupling between the charge and spin density responses that allow to identify the formation of ferromagnetic ground states in narrow magnetic field regions. These effects can be observed in Raman experiments, and are related to the fractional Aharonov-Bohm oscillations of the energy and of the persistent current in the rin
    corecore