113 research outputs found

    The role of the ubiquitination–proteasome pathway in breast cancer: Ubiquitin mediated degradation of growth factor receptors in the pathogenesis and treatment of cancer

    Get PDF
    Aberrant activity of growth factor receptors has been implicated in the pathogenesis of a wide variety of malignancies. The negative regulation of signaling by growth factor receptors is mediated in large part by the ubiquitination, internalization, and degradation of the activated receptor. Over the past few years, considerable insight into the mechanisms that control receptor downregulation has been gained. There are also data suggesting that mutations that lead to inhibition of downregulation of growth factor receptors could play a role in the pathogenesis of cancer. Therapies directed at enhancing the degradation of growth factor receptors offer a promising approach to the treatment of malignancies

    MLL leukemia-associated rearrangements in peripheral blood lymphocytes from healthy individuals

    Get PDF
    Chromosomal translocations are characteristic of hematopoietic neoplasias and can lead to unregulated oncogene expression or the fusion of genes to yield novel functions. In recent years, different lymphoma/leukemia-associated rearrangements have been detected in healthy individuals. In this study, we used inverse PCR to screen peripheral lymphocytes from 100 healthy individuals for the presence of MLL (Mixed Lineage Leukemia) translocations. Forty-nine percent of the probands showed MLL rearrangements. Sequence analysis showed that these rearrangements were specific for MLL translocations that corresponded to t(4;11)(q21;q23) (66%) and t(9;11) (20%). However, RT-PCR failed to detect any expression of t(4;11)(q21;q23) in our population. We suggest that 11q23 rearrangements in peripheral lymphocytes from normal individuals may result from exposure to endogenous or exogenous DNA-damaging agents. In practical terms, the high susceptibility of the MLL gene to chemically-induced damage suggests that monitoring the aberrations associated with this gene in peripheral lymphocytes may be a sensitive assay for assessing genomic instability in individuals exposed to genotoxic stress

    Apolipoprotein L1, income and early kidney damage

    Get PDF
    BACKGROUND: The degree to which genetic or environmental factors are associated with early kidney damage among African Americans (AAs) is unknown. METHODS: Among 462 AAs in the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study, we examined the cross-sectional association between apolipoprotein L1 (APOL1) risk variants and income with: 1) mildly reduced eGFR (<75 mL/min/1.73 m(2), creatinine-cystatin C equation) and 2) elevated urine albumin-to-creatinine ratio (ACR) (≥17 in men and ≥25 mg/g in women). High risk APOL1 status was defined by 2 copies of high-risk variants; low risk if 0 or 1 copy. Income groups were dichotomized as < 14,000/year(lowestincomegroup)or14,000/year (lowest income group) or ≥ 14,000/year. Logistic regression models were adjusted for age, sex, and % European ancestry. RESULTS: Overall, participants’ mean age was 47 years and 16% (n = 73) had high risk APOL1 status. Mean eGFR was 99 mL/min/1.73 m(2). Mildly reduced eGFR was prevalent among 11% (n = 51). The lowest income group had higher adjusted odds (aOR) of mildly reduced eGFR than the higher income group (aOR 1.8, 95% CI 1.2-2.7). High-risk APOL1 was not significantly associated with reduced eGFR (aOR 1.5, 95% CI 0.9-2.5). Among 301 participants with ACR data, 7% (n = 21) had elevated ACR. Compared to low-risk, persons with high-risk APOL1 had higher odds of elevated ACR (aOR 3.8, 95% CI 2.0-7.3). Income was not significantly associated with elevated ACR (aOR 1.8, 95% CI 0.7-4.5). There were no significant interactions between APOL1 and income. CONCLUSIONS: Both genetic and socioeconomic factors may be important determinants of early kidney damage among AAs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12882-015-0008-6) contains supplementary material, which is available to authorized users

    Biological influence of Hakai in cancer: a 10-year review

    Get PDF
    In order to metastasize, cancer cells must first detach from the primary tumor, migrate, invade through tissues, and attach to a second site. Hakai was discovered as an E3 ubiquitin-ligase that mediates the posttranslational downregulation of E-cadherin, a major component of adherens junctions in epithelial cells that is characterized as a potent tumor suppressor and is modulated during various processes including epithelial–mesenchymal transition. Recent data have provided evidences for novel biological functional role of Hakai during tumor progression and other diseases. Here, we will review the knowledge that has been accumulated since Hakai discovery 10 years ago and its implication in human cancer disease. We will highlight the different signaling pathways leading to the influence on Hakai and suggest its potential usefulness as therapeutic target for cancer

    NSCL-1 and NSCL-2 synergistically determine the fate of GnRH-1 neurons and control necdin gene expression

    No full text
    To study the role of the bHLH genes NSCL-1 and NSCL-2 in the development of GnRH-1 neurons, we have generated compound mutant mice. Mutant animals die at birth and show a virtually complete absence of GnRH-1 neurons in the posterior parts of the brain at E18.5 and an aberrant morphology of the remaining GnRH-1 neurons in the anterior parts of the brain indicating that NSCL-1 and NSCL-2 might concomitantly control differentiation/migration of GnRH-1 neurons in a cell autonomous manner. To gain further insights into this process, we screened for NSCL target genes using DNA array hybridization and detected necdin, which is deleted in the human Prader–Willi syndrome phenotypically resembling the NSCL-2 mutation. Using chromatin immunoprecipitation and site-directed mutagenesis of the necdin promoter, we demonstrate that NSCLs together with additional cofactors directly control transcription of the necdin gene. NSCL-dependent control of necdin expression might be instrumental for proper neuronal cell differentiation and enable GnRH-1 neurons to migrate
    corecore