136 research outputs found

    Shape Memory Alloys Via Halide-Activated Pack Equilibration

    Get PDF
    Fabrication of shape memory alloy (SMA) components based on NiTi is challenging due to the precision with which elemental composition and microstructure must be controlled during processing to achieve desired shape memory behavior. Herein, a method to control chemistry in an NiTi SMA via halide-activated pack equilibration (SHAPE) against a constant chemical potential reservoir is described. To demonstrate the efficacy of the SHAPE process, an initially titanium-deficient specimen (pure nickel foam) has been equilibrated against an excess of an intimately mixed two-phase pack (NiTi + Ti2Ni) in the presence of a vapor phase transport agent (iodine). The two-phase pack regulates chemical potentials in this two-component system in accordance with Gibbs\u27 phase rule. Ti-rich NiTi foams thus produced exhibit reproducible and well-defined phase transformation behaviors. The SHAPE process is advantageous for the fabrication of shape memory components of varying areal dimension, shape, and/or complexity owing to independence of the equilibrium state of the system from either the initial state of the specimen or the details of the process kinetics. Current limitations and prospects for the application of this method to improve the quality of SMA components are briefly discussed

    Intragranular Nanocomposite Powders As Building Blocks For Ceramic Nanocomposites

    Get PDF
    A powder-based bottom-up processing scheme is introduced for the production of ceramic nanocomposites. Internal displacement reactions between solid solution powders and metallic reactants proceeding via gaseous intermediates are utilized to generate nanostructured building blocks for the synthesis of ceramic nanocomposites. Subsequent rapid sintering results in ceramic nanocomposites, whose microstructures are inherited from the building blocks. This processing scheme is demonstrated for the production of titanium carbide nanocomposites featuring up to 28 wt.% intragranular tungsten inclusions derived from titanium-tungsten mixed carbide powders. Heat treatment of mixed carbide powders in evacuated ampoules containing titanium sponge and iodine at 1000°C for 24 h resulted in nanocomposite powders featuring tungsten precipitates within titanium carbide grains that were subsequently consolidated via spark plasma sintering at 1300°C for 10 min to produce titanium carbide/metallic tungsten nanocomposites. Transformation of mixed titanium–tungsten carbide powders to titanium carbide/metallic tungsten nanocomposite powders was analyzed via X-ray diffraction. Electron microscopy observations of microstructures pre- and post- sintering showed that the intragranular character of nanocomposite powders can be retained in sintered ceramic nanocomposites. The building block approach demonstrated in this work represents an improved method to make ceramic nanocomposites with majority intragranular character

    Size-Matched Radical Multivalency

    Get PDF
    Persistent π-radicals such as MV^+• (MV refers to methyl viologen, i.e., N,Nꞌ-dimethyl-4,4ꞌ-bipyridinum) engage in weak radical-radical interactions. This phenomenon has been utilized recently in supramolecular chemistry with the discovery that MV+• and [cyclobis(paraquat-p-phenylene)]2(+•) (CBPQT2(+•)) form a strong 1:1 host-guest complex [CBPQT⊂MV]3(+•). In this full paper, we describe the extension of radical-pairing-based molecular recognition to a larger, square-shaped diradical host, [cyclobis(paraquat-4,4ꞌ-biphenylene)]2(+•) (MS2(+•)). This molecular square was assessed for its ability to bind an isomeric series of possible diradical cyclophane guests, which consist of two radical viologen units that are linked by two ortho-, meta-, or para-xylylene bridges to provide different spacings between the planar radicals. UV-Vis-NIR measurements reveal that only the m-xylylene-linked isomer (m-CBPQT2(+•)) binds strongly inside of MS2(+•), resulting in the formation of a tetra-radical complex [MS⊂m-CBPQT]4(+•). Titration experiments and variable temperature UV-Vis-NIR and EPR spectroscopic data indicate that, relative to the smaller tris-radical complex [CBPQT⊂MV]3(+•), the new host-guest complex forms with a more favorable enthalpy change that is offset by a greater entropic penalty. As a result, the association constant (Ka = (1.12+/- 0.08) x 10^5 M^(-1)) for [MS⊂m-CBPQT]4(+•) is similar to that previously determined for [CBPQT⊂MV]3(+•). The (super)structures of MS2(+•), m-CBPQT2(+•), and [MS⊂m-CBPQT]4(+•) were examined by single-crystal X-ray diffraction measurements and DFT calculations. The solid-state and computational structural analyses reveal that m-CBPQT2(+•) is ideally sized to bind inside of MS2(+•). The solid-state superstructures also indicate that localized radical-radical interactions in m-CBPQT2(+•) and [MS⊂m-CBPQT]4(+•) disrupt the extended radical-pairing interactions that are common in crystals of other viologen radical cations. Lastly, the formation of [MS⊂m-CBPQT]4(+•) was probed by cyclic voltammetry, demonstrating that the radical states of the cyclophanes are stabilized by the radical-pairing interactions

    Complete fuzzy scheduling and fuzzy earned value management in construction projects

    Full text link
    Complete fuzzy scheduling and fuzzy earned value management in construction projects Por: Luis Ponz-Tienda, Jose; Pellicer, Eugenio; Yepes, Victor JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A Volumen: 13 Número: 1 Páginas: 56-68 Fecha de publicación: JAN 2012 Search For Full Text Cerrar abstractCerrar abstract This paper aims to present a comprehensive proposal for project scheduling and control by applying fuzzy earned value. It goes a step further than the existing literature: in the formulation of the fuzzy earned value we consider not only its duration, but also cost and production, and alternatives in the scheduling between the earliest and latest times. The mathematical model is implemented in a prototypical construction project with all the estimated values taken as fuzzy numbers. Our findings suggest that different possible schedules and the fuzzy arithmetic provide more objective results in uncertain environments than the traditional methodology. The proposed model allows for controlling the vagueness of the environment through the adjustment of the alpha-cut, adapting it to the specific circumstances of the project. © Zhejiang University and Springer-Verlag Berlin Heidelberg 2012.The authors want to thank Ms. Doria GIL-SENABRE, Universitat Politecnica de Valencia, Spain, for the support provided.Ponz Tienda, JL.; Pellicer Armiñana, E.; Yepes Piqueras, V. (2012). Complete fuzzy scheduling and fuzzy earned value management in construction projects. Journal of Zhejiang University Science A. 13(1):56-68. https://doi.org/10.1631/jzus.A1100160S566813

    R-SNARE Homolog MoSec22 Is Required for Conidiogenesis, Cell Wall Integrity, and Pathogenesis of Magnaporthe oryzae

    Get PDF
    Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediate intracellular vesicle fusion, which is an essential cellular process of the eukaryotic cells. To investigate the role of SNARE proteins in the rice blast fungus Magnaporthe oryzae, MoSec22, an ortholog of Saccharomyces cerevisiae SNARE protein Sec22, was identified and the MoSEC22 gene disrupted. MoSec22 restored a S. cerevisiae sec22 mutant in resistance to cell wall perturbing agents, and the ΔMosec22 mutant also exhibited defects in mycelial growth, conidial production, and infection of the host plant. Treatment with oxidative stress inducers indicated a breach in cell wall integrity, and staining and quantification assays suggested abnormal chitin deposition on the lateral walls of hyphae of the ΔMosec22 mutant. Furthermore, hypersensitivity to the oxidative stress correlates with the reduced expression of the extracellular enzymes peroxidases and laccases. Our study thus provides new evidence on the conserved function of Sec22 among fungal organisms and indicates that MoSec22 has a role in maintaining cell wall integrity affecting the growth, morphogenesis, and virulence of M. oryzae

    The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes

    Get PDF
    Members of the genus Xenorhabdus are entomopathogenic bacteria that associate with nematodes. The nematode-bacteria pair infects and kills insects, with both partners contributing to insect pathogenesis and the bacteria providing nutrition to the nematode from available insect-derived nutrients. The nematode provides the bacteria with protection from predators, access to nutrients, and a mechanism of dispersal. Members of the bacterial genus Photorhabdus also associate with nematodes to kill insects, and both genera of bacteria provide similar services to their different nematode hosts through unique physiological and metabolic mechanisms. We posited that these differences would be reflected in their respective genomes. To test this, we sequenced to completion the genomes of Xenorhabdus nematophila ATCC 19061 and Xenorhabdus bovienii SS-2004. As expected, both Xenorhabdus genomes encode many anti-insecticidal compounds, commensurate with their entomopathogenic lifestyle. Despite the similarities in lifestyle between Xenorhabdus and Photorhabdus bacteria, a comparative analysis of the Xenorhabdus, Photorhabdus luminescens, and P. asymbiotica genomes suggests genomic divergence. These findings indicate that evolutionary changes shaped by symbiotic interactions can follow different routes to achieve similar end points

    A new era for understanding amyloid structures and disease

    Get PDF
    The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention
    • …
    corecore