242 research outputs found

    Efficacy of an autogenous vaccine against highly virulent "Staphylococcus aureus" infection in rabbits

    Full text link
    [EN] The efficacy of an autogenous vaccine consisting of a whole cell suspension of formalin killed bacteria in sterile buffered saline against Staphylococcus aureus infections was determined, using a well-established rabbit skin infection model. Thirteen eight-week-old rabbits were vaccinated twice subcutaneously with a two-week interval while ten rabbits were injected twice with sterile buffered saline. Two weeks after the last injection, ten vaccinated and all PBS-injected rabbits were inoculated intradermally with 108 cfu of a S. aureus strain which had been shown to be highly virulent for rabbits. Three vaccinated animals served as negative controls and were intradermally injected with sterile buffered saline. All rabbits were examined daily for the development of skin lesions until fourteen days after the experimental infection when all rabbits were euthanised. All animals experimentally infected with S. aureus developed skin abscesses within 24 hours post-inoculation, but in the vaccinated group the maximum abscess diameter was significantly lower than in the non-vaccinated group (P=0.048). The difference between the autovaccinated and non-vaccinated group increased over time (P<0.001). These results indicate that vaccination with an inactivated whole cell bacterin may be useful for control of staphylococcosis in rabbits but does not prevent abscess formation in animals inoculated with a high dose of a highly virulent S. aureus strain.Meulemans, G.; Haesebrouck, F.; Lipinska, U.; Duchateau, L.; Hermans, K. (2011). Efficacy of an autogenous vaccine against highly virulent "Staphylococcus aureus" infection in rabbits. World Rabbit Science. 19(1):1-9. https://doi.org/10.4995/wrs.2011.8121919

    Correction to: Rapid turnover of life-cycle-related genes in the brown algae.

    Get PDF
    Following publication of the original article [1], it was noticed that the author names were published with initials instead of full names. The article [1] has been updated

    Rapid turnover of life-cycle-related genes in the brown algae.

    Get PDF
    Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporophytes are independent and free-living and may present dramatic phenotypic differences. The same shared genome can therefore be subject to different, even conflicting, selection pressures during each of the life cycle generations. Here, we analyze the nature and extent of genome-wide, generation-biased gene expression in four species of brown algae with contrasting levels of dimorphism between life cycle generations. We show that the proportion of the transcriptome that is generation-specific is broadly associated with the level of phenotypic dimorphism between the life cycle stages. Importantly, our data reveals a remarkably high turnover rate for life-cycle-related gene sets across the brown algae and highlights the importance not only of co-option of regulatory programs from one generation to the other but also of a role for newly emerged, lineage-specific gene expression patterns in the evolution of the gametophyte and sporophyte developmental programs in this major eukaryotic group. Moreover, we show that generation-biased genes display distinct evolutionary modes, with gametophyte-biased genes evolving rapidly at the coding sequence level whereas sporophyte-biased genes tend to exhibit changes in their patterns of expression. Our analysis uncovers the characteristics, expression patterns, and evolution of generation-biased genes and underlines the selective forces that shape this previously underappreciated source of phenotypic diversity

    The Cystic Fibrosis-Like Airway Surface Layer Is not a Significant Barrier for Delivery of Eluforsen to Airway Epithelial Cells

    Get PDF
    Background: Eluforsen (previously known as QR-010) is a 33-mer antisense oligonucleotide under development for oral inhalation in cystic fibrosis (CF) patients with the delta F508 mutation. Previous work has shown that eluforsen restores CF transmembrane conductance regulator (CFTR) function in vitro and in vivo. To be effective, eluforsen has first to reach its primary target, the lung epithelial cells. Therefore, it has to diffuse through the CF airway surface layer (ASL), which in CF is characterized by the presence of thick and viscous mucus, impaired mucociliary clearance, and persistent infections. The goal of this study was to assess delivery of eluforsen through CF-like ASL. Methods and Results: First, air-liquid interface studies with cultured primary airway epithelial cells revealed that eluforsen rapidly diffuses through CF-like mucus at clinically relevant doses when nebulized once or repeatedly, over a range of testing doses. Furthermore, eluforsen concentrations remained stable in CF patient sputum for at least 48 hours, and eluforsen remained intact in the presence of various inhaled CF medications for at least 24 hours. When testing biodistribution of eluforsen after orotracheal administration in vivo, no differences in lung, liver, trachea, and kidney eluforsen concentration were observed between mice with a CF-like lung phenotype (ENaC-overexpressing mice) and control wild-Type (WT) littermates. Also, eluforsen was visualized in the airway epithelial cell layer of CF-like muco-obstructed mice and WT littermates. Finally, studies of eluforsen uptake and binding to bacteria prevalent in CF lungs, and diffusion through bacterial biofilms showed that eluforsen was stable and not absorbed by, or bound to bacteria. In addition, eluforsen was found to be able to penetrate Pseudomonas aeruginosa biofilms. Conclusions: The thickened and concentrated CF ASL does not constitute a significant barrier for delivery of eluforsen, and feasibility of oral inhalation of eluforsen is supported by these data

    Reversal of the ΔdegP Phenotypes by a Novel rpoE Allele of Escherichia coli

    Get PDF
    RseA sequesters RpoE (σE) to the inner membrane of Escherichia coli when envelope stress is low. Elevated envelope stress triggers RseA cleavage by the sequential action of two membrane proteases, DegS and RseP, releasing σE to activate an envelope stress reducing pathway. Revertants of a ΔdegP ΔbamB strain, which fails to grow at 37°C due to high envelope stress, harbored mutations in the rseA and rpoE genes. Null and missense rseA mutations constitutively hyper-activated the σE regulon and significantly reduced the major outer membrane protein (OMP) levels. In contrast, a novel rpoE allele, rpoE3, resulting from the partial duplication of the rpoE gene, increased σE levels greater than that seen in the rseA mutant background but did not reduce OMP levels. A σE-dependent RybB::LacZ construct showed only a weak activation of the σE pathway by rpoE3. Despite this, rpoE3 fully reversed the growth and envelope vesiculation phenotypes of ΔdegP. Interestingly, rpoE3 also brought down the modestly activated Cpx envelope stress pathway in the ΔdegP strain to the wild type level, showing the complementary nature of the σE and Cpx pathways. Through employing a labile mutant periplasmic protein, AcrAL222Q, it was determined that the rpoE3 mutation overcomes the ΔdegP phenotypes, in part, by activating a σE-dependent proteolytic pathway. Our data suggest that a reduction in the OMP levels is not intrinsic to the σE-mediated mechanism of lowering envelope stress. They also suggest that under extreme envelope stress, a tight homeostasis loop between RseA and σE may partly be responsible for cell death, and this loop can be broken by mutations that either lower RseA activity or increase σE levels

    Panton-Valentine Leukocidin Does Play a Role in the Early Stage of Staphylococcus aureus Skin Infections: A Rabbit Model

    Get PDF
    Despite epidemiological data linking necrotizing skin infections with the production of Panton-Valentine leukocidin (PVL), the contribution of this toxin to the virulence of S. aureus has been highly discussed as a result of inconclusive results of in vivo studies. However, the majority of these results originate from experiments using mice, an animal species which neutrophils - the major target cells for PVL - are highly insensitive to the action of this leukocidin. In contrast, the rabbit neutrophils have been shown to be as sensitive to PVL action as human cells, making the rabbit a better experimental animal to explore the PVL role. In this study we examined whether PVL contributes to S. aureus pathogenicity by means of a rabbit skin infection model. The rabbits were injected intradermally with 108 cfu of either a PVL positive community-associated methicillin-resistant S. aureus isolate, its isogenic PVL knockout or a PVL complemented knockout strain, and the development of skin lesions was observed. While all strains induced skin infection, the wild type strain produced larger lesions and a higher degree of skin necrosis compared to the PVL knockout strain in the first week after the infection. The PVL expression in the rabbits was indirectly confirmed by a raise in the serum titer of anti-LukS-PV antibodies observed only in the rabbits infected with PVL positive strains. These results indicate that the rabbit model is more suitable for studying the role of PVL in staphylococcal diseases than other animal models. Further, they support the epidemiological link between PVL producing S. aureus strains and necrotizing skin infections
    corecore