246 research outputs found

    Участь наукових працівників Краківської політехніки в процесі формування ресурсів бібліотеки

    Get PDF
    Biblioteka Politechniki Krakowskiej (BPK) rozpoznając potrzeby informacyjne społeczności akademickiej własnej uczelni, podejmuje liczne inicjatywy mające na celu wspieranie edukacji oraz badań naukowych realizowanych na Politechnice Krakowskiej. Dbając o odpowiednią organizację komunikacji naukowej na uczelni dostarcza nowoczesnych narzędzi, które mają m.in. umożliwić udział pracowników naukowych PK w procesie budowania zasobów BPK. Działania związane z tworzeniem i wzbogacaniem treści zasobów przez ich użytkowników umożliwiają szeroko rozumianą interakcję między użytkownikami a zasobami, a także przyczyniają się do obustronnej komunikacji pomiędzy użytkownikami a bibliotekarzami.The Library in Cracow University of Technology recognizing the needs of the academic society of Cracow University of Technology, taking number of initiatives to support and education and scientific research carried out in Cracow University of Technology. Ensuring appropriate organization of scientific communication at the campus, the library provides, modern and advanced tools allowing scientific staff of the University to take a part in constant resources development. The activities are related to the development and improvement of the library resources by the users (scientific staff etc.) enabling broader interaction among the users and resources, finally it contributes to mutual communication between the users and librarians.Бібліотека Краківської політехніки, реагуючи на інформаційні потреби університетської спільноти започатковує різні ініціативи і проекти, маючи на меті забезпечення освітнього процесу і наукових досліджень, які здійснюються у навчальному закладі. Дбаючи про належну наукову комунікацію у стінах Політехніки, бібліотека послуговується сучасними засобами, які уможливлюють генерацію інформаційних ресурсів. Спільна діяльність, пов’язана зі створенням і змістовим наповненням ресурсної бази користувачами будує взаємодію поміж ресурсною базою і користувачем, а також взаємозв’язок з бібліотечними працівниками

    HTRA3 (HtrA serine peptidase 3)

    Get PDF
    Review on HTRA3 (HtrA serine peptidase 3), with data on DNA, on the protein encoded, and where the gene is implicated

    HTRA1 (HtrA serine peptidase 1)

    Get PDF
    Review on HTRA1 (HtrA serine peptidase 1), with data on DNA, on the protein encoded, and where the gene is implicated

    Protein Complexes in Urine Interfere with Extracellular Vesicle Biomarker Studies

    Get PDF
    Urine exosomes (extracellular vesicles; EVs) contain (micro)RNA (miRNA) and protein biomarkers that are useful for the non-invasive diagnosis of various urological diseases. However, the urinary Tamm-Horsfall protein (THP) complex, which forms at reduced temperatures, may affect EV isolation and may also lead to contamination by other molecules including microRNAs (miRNAs). Therefore, we compared the levels of three miRNAs within the purified EV fraction and THP- protein-network. Urine was collected from healthy donors and EVs were isolated by ultracentrifugation (UC), two commercial kits or sepharose size-exclusion chromatography (SEC). SEC enables the separation of EVs from protein-complexes in urine. After UC, the isolation of EV-miRNA was compared with two commercial kits. The EV isolation efficiency was evaluated by measuring the EV protein markers, Alix and TSG101, CD63 by Western blotting, or miR-375, miR-204 and miR-21 by RT-qPCR. By using commercial kits, EV isolation resulted in either low yields or dissimilar miRNA levels. Via SEC, the EVs were separated from the protein-complex fraction. Importantly, a different ratio was observed between the three miRNAs in the protein fraction compared to the EV fraction. Thus, protein-complexes within urine may influence EV-biomarker studies. Therefore, the characterization of the isolated EV fraction is important to obtain reproducible results

    A partially sex-reversed giant kelp sheds light into the mechanisms of sexual differentiation in a UV sexual system

    Get PDF
    In UV sexual systems, sex is determined during the haploid phase of the life cycle and males have a V chromosome whereas females have a U chromosome. Previous work in the brown alga Ectocarpus revealed that the V chromosome has a dominant role in male sex determination and suggested that the female developmental programme may occur by 'default'. Here, we describe the identification of a genetically male giant kelp strain presenting phenotypic features typical of a female, despite lacking the U-specific region. The conversion to the female developmental programme is however incomplete, because gametes of this feminized male are unable to produce the sperm-attracting pheromone lamoxirene. We identify the transcriptomic patterns underlying the male and female specific developmental programmes, and show that the phenotypic feminization is associated with both feminization and de-masculinization of gene expression patterns. Importantly, the feminization phenotype was associated with dramatic downregulation of two V-specific genes including a candidate male-determining gene. Our results reveal the transcriptional changes associated with sexual differentiation in a UV system, and contribute to disentangling the role of sex-linked and autosomal gene expression in the initiation of sex-specific developmental programmes. Overall, the data presented here imply that the U-specific region is not required to initiate the female developmental programme, but is critical to produce fully functional eggs, arguing against the idea that female is the 'default' sex in this species

    Varicellovirus UL 49.5 proteins differentially affect the function of the transporter associated with antigen processing, TAP

    Get PDF
    Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I–restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL49.5 proteins block TAP as well, these data indicate that UL49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL49.5. Taken together, these results classify the UL49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms

    MRP3 is a sex determining gene in the diatom Pseudo-nitzschia multistriata

    Get PDF
    A broad diversity of sex-determining systems has evolved in eukaryotes. However, information on the mechanisms of sex determination for unicellular microalgae is limited, including for diatoms, key-players of ocean food webs. Here we report the identification of a mating type (MT) determining gene for the diatom Pseudo-nitzschia multistriata. By comparing the expression profile of the two MTs, we find five MT-biased genes, of which one, MRP3, is expressed exclusively in MT+ strains in a monoallelic manner. A short tandem repeat of specific length in the region upstream of MRP3 is consistently present in MT+ and absent in MT- strains. MRP3 overexpression in an MT- strain induces sex reversal: the transgenic MT- can mate with another MT- strain and displays altered regulation of the other MT-biased genes, indicating that they lie downstream. Our data show that a relatively simple genetic program is involved in defining the MT in P. multistriata

    Reversal of the ΔdegP Phenotypes by a Novel rpoE Allele of Escherichia coli

    Get PDF
    RseA sequesters RpoE (σE) to the inner membrane of Escherichia coli when envelope stress is low. Elevated envelope stress triggers RseA cleavage by the sequential action of two membrane proteases, DegS and RseP, releasing σE to activate an envelope stress reducing pathway. Revertants of a ΔdegP ΔbamB strain, which fails to grow at 37°C due to high envelope stress, harbored mutations in the rseA and rpoE genes. Null and missense rseA mutations constitutively hyper-activated the σE regulon and significantly reduced the major outer membrane protein (OMP) levels. In contrast, a novel rpoE allele, rpoE3, resulting from the partial duplication of the rpoE gene, increased σE levels greater than that seen in the rseA mutant background but did not reduce OMP levels. A σE-dependent RybB::LacZ construct showed only a weak activation of the σE pathway by rpoE3. Despite this, rpoE3 fully reversed the growth and envelope vesiculation phenotypes of ΔdegP. Interestingly, rpoE3 also brought down the modestly activated Cpx envelope stress pathway in the ΔdegP strain to the wild type level, showing the complementary nature of the σE and Cpx pathways. Through employing a labile mutant periplasmic protein, AcrAL222Q, it was determined that the rpoE3 mutation overcomes the ΔdegP phenotypes, in part, by activating a σE-dependent proteolytic pathway. Our data suggest that a reduction in the OMP levels is not intrinsic to the σE-mediated mechanism of lowering envelope stress. They also suggest that under extreme envelope stress, a tight homeostasis loop between RseA and σE may partly be responsible for cell death, and this loop can be broken by mutations that either lower RseA activity or increase σE levels
    corecore