20 research outputs found

    Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators

    Full text link
    Spectroscopy of whispering-gallery mode (WGM) microresonators has become a powerful scientific tool, enabling detection of single viruses, nanoparticles, and even single molecules. Yet the demonstrated timescale of these schemes has been limited so far to milliseconds or more. Here we introduce a novel scheme that is orders of magnitude faster, capable of capturing complete spectral snapshots of WGM resonances at nanosecond timescales: cavity ring-up spectroscopy (CRUS). Based on sharply-rising detuned probe pulses, CRUS combines the sensitivity of heterodyne measurements with the highest possible, transform-limited acquisition rate. As a demonstration we capture spectra of microtoroid resonators at time intervals as short as 16 ns, directly monitoring sub-microsecond dynamics of their optomechanical vibrations, thermorefractive response and Kerr nonlinearity. CRUS holds promise for the study of fast biological processes such as enzyme kinetics, protein folding and light harvesting, with applications in other fields such as cavity QED and pulsed optomechanics.Comment: 6 pages, 4 figure

    SPECT/CT-plethysmography – non-invasive quantitation of bone and soft tissue blood flow

    Get PDF
    Preserved blood flow to bone and soft tissue is essential for their normal function. To date only numerous methods are suitable for direct bone blood flow (BBF) measurement. Here, we introduce a novel quantitative method for bone and soft tissue blood flow (BBF and SBF, respectively) measurement. It involves a combination of SPECT/CT imaging for blood pool localization in a specific region of interest ("soft" and "hard" tissues composing a limb) with veno-occlusive plethysmography. Using it, we measured BBF and SBF in the four limbs of 10 healthy subjects. At steady state blood flow measurements in the four limbs were similar, ranging between 5.5 – 6.5 and 1.87–2.48 ml per 100 ml of tissue per minute for BBF and SBF, respectively. Our results are comparable to those in the literature. We concluded that SPECT/CT-plethysmography appears to be a readily available and easy to use method to measure BBF and SBF, and can be added to the armamentarium of methods for BBF measurements

    Cardiovascular Autonomic Profile in Women With Premenstrual Syndrome

    Get PDF
    Introduction: The premenstrual syndrome (PMS) is a constellation of somatic and psychogenic symptoms that appear during late luteal (LL) phase of the menstrual cycle. Since many symptoms could be related to the autonomic nervous system, we hypothesized that the sympathetic nervous system is perturbed in PMS.Methods: The cardiovascular autonomic profile of nine women with PMS (30.4 ± 2.5 years) were compared to that of nine healthy controls (30 ± 2.5 years) during their early follicular (EF) and LL phases of the menstrual cycle. Plasma norepinephrine (NE) concentrations, power spectral analysis of heart rate and systolic blood pressure (BP), and baroreflex sensitivity (BRS) were assessed during recumbency and a head-up tilt (HUT). Cardiovascular responsiveness to α1- and β-adrenoreceptor agonists (phenylephrine and isoproterenol, respectively) were also assessed.Results: In the LL phase, the plasma NE concentrations in women with PMS during recumbency and a HUT were lower than those in women without PMS [180 ± 30 vs. 320 ± 50 pg/ml; p = 0.04 (recumbent), and 480 ± 70 vs. 940 ± 180 pg/ml: p = 0.02 (HUT)]. In the LL phase, the dose of phenylephrine required to increase systolic BP by 15 mmHg in women with PMS was significantly greater than that in women without PMS (202 ± 30 μg vs. 138 ± 20 μg; p = 0.02). Sympathetic and vagal cardiac control indices were comparable in the two groups in the menstrual phases. In women with PMS, the value of LFSBP in the LL phase was lower than that in the EF phase (0.98 ± 0.2 vs. 1.77 ± 0.4 mmHg2, p = 0.04). The increase in LFSBP in women with PMS in the LL phase during HUT was greater than that in the controls, 5.2 ± 0.9 vs. 3.1 ± 0.5 mmHg2, p = 0.045, and this increase was associated with a significant decrease in BRS.Conclusion: In women with PMS without psychogenic symptoms, the sympathetic control of their circulation is not dominant during the LL phase of their menstrual cycle

    Recommenders benchmark framework

    Full text link
    Abstract: Recommender Systems are software tools and techniques providing suggestions for items to be of use to a user. Recommender systems have proven to be a valuable means for online users to cope with the virtual information overload and have become one of the most powerful and popular tools in electronic commerce. Correspondingly, various techniques for recommendation generation have been proposed during the last decade. In this paper we present a new benchmark framework. It allows researchers or practitioners to quickly try out and compare different recommendation methods on new data sets. Extending the framework is easy thanks to a simple and well-defined Application Programming Interface (API). It contains a plug-in mechanism allowing others to develop their own algorithms and incorporate them in the framework. An interactive graphical user interface is provided for setting new benchmarks, integrate new plug-ins with the framework, setting up configurations and exploring benchmark results

    Appendix

    No full text
    Table.1a. Patient’s Demographic and Clinical Characteristics. Table.1b. Screening Criteria. Fig.1. CONSORT Flow Diagram. Fig.2. ROIs Constructing The Chronic Pain Matrix Used For Graph Theory Analysis. Fig.3. Adjacency Matrix Threshol

    Data from: Cannabis analgesia in chronic neuropathic pain is associated with altered brain connectivity

    No full text
    Objective: The purpose of this study was to characterize the functional brain changes involved in THC modulation of chronic neuropathic pain. Methods: Fifteen patients with chronic radicular neuropathic pain participated in a randomized, double-blind, placebo-controlled trial employing a counterbalanced, within-subjects design. Pain assessments and functional resting state brain scans were performed at baseline and after sublingual THC administration. We examined functional connectivity of the anterior cingulate cortex (ACC) and pain related network dynamics using graph theory measures. Results: THC significantly reduced patients’ pain compared to placebo. THC-induced analgesia was correlated with a reduction in functional connectivity between the anterior cingulate cortex (ACC) and the sensorimotor cortex. Moreover, the degree of reduction was predictive of the response to THC. Graph theory analyses of local measures demonstrated reduction in network connectivity in areas involved in pain processing, and specifically in the dorsolateral prefrontal cortex (DLPFC), which were correlated with individual pain reduction. Conclusions: These results suggest that the ACC and DLPFC, two major cognitive-emotional modulation areas, and their connections to somatosensory areas, are functionally involved in the analgesic effect of THC in chronic pain. This effect may therefore be mediated through induction of functional disconnection between regulatory high-order affective regions and the sensorimotor cortex. Moreover, baseline functional connectivity between these brain areas may serve as a predictor for the extent of pain relief induced by THC
    corecore