402 research outputs found

    Activity Identification and Local Linear Convergence of Douglas--Rachford/ADMM under Partial Smoothness

    Full text link
    Convex optimization has become ubiquitous in most quantitative disciplines of science, including variational image processing. Proximal splitting algorithms are becoming popular to solve such structured convex optimization problems. Within this class of algorithms, Douglas--Rachford (DR) and alternating direction method of multipliers (ADMM) are designed to minimize the sum of two proper lower semi-continuous convex functions whose proximity operators are easy to compute. The goal of this work is to understand the local convergence behaviour of DR (resp. ADMM) when the involved functions (resp. their Legendre-Fenchel conjugates) are moreover partly smooth. More precisely, when both of the two functions (resp. their conjugates) are partly smooth relative to their respective manifolds, we show that DR (resp. ADMM) identifies these manifolds in finite time. Moreover, when these manifolds are affine or linear, we prove that DR/ADMM is locally linearly convergent. When JJ and GG are locally polyhedral, we show that the optimal convergence radius is given in terms of the cosine of the Friedrichs angle between the tangent spaces of the identified manifolds. This is illustrated by several concrete examples and supported by numerical experiments.Comment: 17 pages, 1 figure, published in the proceedings of the Fifth International Conference on Scale Space and Variational Methods in Computer Visio

    On the dynamics of WKB wave functions whose phase are weak KAM solutions of H-J equation

    Full text link
    In the framework of toroidal Pseudodifferential operators on the flat torus Tn:=(R/2πZ)n\Bbb T^n := (\Bbb R / 2\pi \Bbb Z)^n we begin by proving the closure under composition for the class of Weyl operators Opw(b)\mathrm{Op}^w_\hbar(b) with simbols bSm(Tn×Rn)b \in S^m (\mathbb{T}^n \times \mathbb{R}^n). Subsequently, we consider Opw(H)\mathrm{Op}^w_\hbar(H) when H=12η2+V(x)H=\frac{1}{2} |\eta|^2 + V(x) where VC(Tn;R)V \in C^\infty (\Bbb T^n;\Bbb R) and we exhibit the toroidal version of the equation for the Wigner transform of the solution of the Schr\"odinger equation. Moreover, we prove the convergence (in a weak sense) of the Wigner transform of the solution of the Schr\"odinger equation to the solution of the Liouville equation on Tn×Rn\Bbb T^n \times \Bbb R^n written in the measure sense. These results are applied to the study of some WKB type wave functions in the Sobolev space H1(Tn;C)H^{1} (\mathbb{T}^n; \Bbb C) with phase functions in the class of Lipschitz continuous weak KAM solutions (of positive and negative type) of the Hamilton-Jacobi equation 12P+xv±(P,x)2+V(x)=Hˉ(P)\frac{1}{2} |P+ \nabla_x v_\pm (P,x)|^2 + V(x) = \bar{H}(P) for PZnP \in \ell \Bbb Z^n with >0\ell >0, and to the study of the backward and forward time propagation of the related Wigner measures supported on the graph of P+xv±P+ \nabla_x v_\pm

    Constant-angle surfaces in liquid crystals

    Get PDF
    We discuss some properties of surfaces in R3 whose unit normal has constant angle with an assigned direction field. The constant angle condition can be rewritten as an Hamilton-Jacobi equation correlating the surface and the direction field. We focus on examples motivated by the physics of interfaces in liquid crystals and of layered fluids, and discuss the properties of the constant-angle surfaces when the direction field is singular along a line (disclination) or at a point (hedgehog defect

    Weighted Sobolev spaces of radially symmetric functions

    Full text link
    We prove dilation invariant inequalities involving radial functions, poliharmonic operators and weights that are powers of the distance from the origin. Then we discuss the existence of extremals and in some cases we compute the best constants.Comment: 38 page

    Wong-Zakai approximation of solutions to reflecting stochastic differential equations on domains in Euclidean spaces II

    Full text link
    The strong convergence of Wong-Zakai approximations of the solution to the reflecting stochastic differential equations was studied in [2]. We continue the study and prove the strong convergence under weaker assumptions on the domain.Comment: To appear in "Stochastic Analysis and Applications 2014-In Honour of Terry Lyons", Springer Proceedings in Mathematics and Statistic

    The Einstein-Vlasov sytem/Kinetic theory

    Get PDF
    The main purpose of this article is to guide the reader to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades where the main focus has been on nonrelativistic- and special relativistic physics, e.g. to model the dynamics of neutral gases, plasmas and Newtonian self-gravitating systems. In 1990 Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (e.g. fluid models). The first part of this paper gives an introduction to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental in order to get a good comprehension of kinetic theory in general relativity.Comment: 31 pages. This article has been submitted to Living Rev. Relativity (http://www.livingreviews.org

    A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry

    Get PDF
    We present here a review of the fundamental topics of Hartree-Fock theory in Quantum Chemistry. From the molecular Hamiltonian, using and discussing the Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock equations for the electronic problem. Special emphasis is placed in the most relevant mathematical aspects of the theoretical derivation of the final equations, as well as in the results regarding the existence and uniqueness of their solutions. All Hartree-Fock versions with different spin restrictions are systematically extracted from the general case, thus providing a unifying framework. Then, the discretization of the one-electron orbitals space is reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition of the basic underlying concepts related to the construction and selection of Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we close the review with a section in which the most relevant modern developments (specially those related to the design of linear-scaling methods) are commented and linked to the issues discussed. The whole work is intentionally introductory and rather self-contained, so that it may be useful for non experts that aim to use quantum chemical methods in interdisciplinary applications. Moreover, much material that is found scattered in the literature has been put together here to facilitate comprehension and to serve as a handy reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and subeqn package
    corecore