-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Crossref

Lin Boundary Value Problems 2012,2012:118 @ Boun C ary Va ue PrO plems

http://www.boundaryvalueproblems.com/content/2012/1/118 a SpringerOpen Journal

RESEARCH Open Access

Multiple positive solutions for semilinear
elliptic systems involving subcritical
nonlinearities in RN

Huei-li Lin®

“Correspondence:

hlin@mail.cgu.edutw Abstract

Department of Natural Sciences in . . . . e
thepCemerfor General Education In this paper, we investigate the effect of the coefficient f(x) of the subcritical

Chang Gung University, Tao-Yuan, nonlinearity. Under some assumptions, for sufficiently small g, A, > 0, there are at

333, Taiwan, ROC. least k (> 1) positive solutions of the semilinear elliptic systems
~-&?AU+T=AgX)|u|9%u + ﬁf(x)ml""zmﬂﬁ in RY;
~€? AV +7= ph([7|77 + L FEe[7P27  inRY,
U, veH V),

wherea>1,8>1,2<g<p=a+ B <2*=2N/(N-2)for N > 3.
MSC: 35J20; 35J25; 35J65

Keywords: semilinear elliptic systems; subcritical exponents; Nehari manifold

1 Introduction
ForN>3,a>1,8>1land2<g<p=a+ B <2*=2N/(N —2), we consider the semilinear
elliptic systems

—e2Au+u=Ag)|ul"%u + ﬁf(x)|ﬁ|a-zﬁ|9|ﬂ in RY;
~e2AV+7 = ph() V1% + Lof)[E*[91P%5  inRY; (Een)

u>0, v>0,

where ¢, A, > 0.
Let f, g and £ satisfy the following conditions:
(A1) f is a positive continuous function in RN and limpy— 00 f(%) = foo > 0.
(A2) there exist k points a',a?,...,a in RN such that

1) = =1 forl<i<k,
f(a) Jrcrel]g;\(!f(x) orl<i<

and f, < 1.
(A3) g,he L"(RN)NL>®(RN) where m = (a + B)/(a + B—q),and g,h = 0.
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In [1], if Q is a smooth and bounded domain in R¥ (N < 3), they considered the following
system:

2AU — MU = i + fuv’  in €
E2AV = Ay = o + BV in

u>0o, v>0,

and proved the existence of a least energy solution in 2 for sufficiently small £ > 0 and
B € (=00, Bo). Lin and Wei also showed that this system has a least energy solution in RN
for e =1and B € (0, Bo). In this paper, we study the effect of f(z) of (Eg,,w). Recently, many
authors [2-5] considered the elliptic systems with subcritical or critical exponents, and
they proved the existence of a least energy positive solution or the existence of at least two
positive solutions for these problems. In this paper, we construct the k compact Palais-
Smale sequences which are suitably localized in correspondence of k maximum points
of f. Then we could show that under some assumptions (Al)-(A3), for sufficiently small
&, i > 0, there are at least k (> 1) positive solutions of the elliptic system (E, , ;). By the
change of variables

X =€z, u(z) =u(ez) and v(z) =v(ez),

System (E,,,,) is transformed to

—Au+u=rg(ez)|ulT%u + ﬁﬂf(ez)|z,t|"“2u|v|‘3 in RY;
—Av+v=ph(ez)|v|T v + %f(sz)lma [v[f=2v  in RY; (Ee )

u>0, v>0.

Let H = HY(RN) x H'(RN) be the space with the standard norm

172
”(u,v)HH = |:/RN(|VL¢|2 + uz) dz + /RN(|VV|2 +V2) dz] .

Associated with the problem (E,,; ,,), we consider the C'-functional J; ; ,,, for (4,v) € H,

1
a+pf

1
Joali) = 2 @)}~ /R FleDul 1P dz

1 q q
q/RN (Ag(sz)|u| + puh(ez)|v| )dz.

Actually, the weak solution (u,v) € H of (E; ;) is the critical point of the functional J; ; ,,,
that is, (1, v) € H satisfies

/N(VuV<p1 + VvV + ug + vps) dz
R

“a / ¢(e2) Ul upy dz - 1 / H(e2) VT v dz
RN RN

o

_ B _
a2 B _ o B-2 —
+ﬂ/RNf(<»3z)|u| ulv|’ o1 dz —a+ﬁ/RNf(ez)|u| VP vy dz =0

o

for any (¢1,¢2) € H.
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We consider the Nehari manifold

M, ;... = {(u,v) € H\{(0,0)}|[]L, . (,v), (u,)) = O}, (1.1)

where
a0 @) = || - / Fle2)ul“IvIP dz - / (Ag(e2) ul? + h(e2)VI7) dz.
RN RN

The Nehari manifold M, , contains all nontrivial weak solutions of (E ;).
Let
1, V)17,

Sep = inf , (1.2)
“F wreH ®N)\((0)) ([ [u]*|v|P dz)?/@+F)

then by [2, Theorem 5], we have

B _a
o= (5) 7 (2) ]

where p =« + B and §,, is the best Sobolev constant defined by

Jen(IVul* + u?) dz
mn
ueH!®@N\(0) ([ [ul? dz)?P

Sp=
For the semilinear elliptic systems (A = ; = 0)

-Au+u= ﬁf(sz)lul”“zulvlﬂ in RN;
—-Av+v= %f(sz)|u|°‘|v|ﬂ’2v in RY; (Ee)
(u,v) € H,

we define the energy functional I, (1, v) = 11|(x,v)|1%, - ﬁfRNf(f?Z)WW [v|? dz, and

N, = {(u,v) € H\{(0,0)}|{I(,v), (,v)) = 0}.

If f = max, gy f(2) (= 1), then we define Ina (4, v) = 31| (1, v) |3, — ﬁ v |u|®|v|P dz and
emax = inf Imax (Ll, V)»
(u,v)€Nmax

where Ninax = {(,v) € H\{(0, 0)}[{L},,x (1, ), (,v)) = 0}.
It is well known that this problem

—Au+u=|uf?u inRY;
(EO)
u € HY(RN),
has the unique, radially symmetric and positive ground state solution w € H}(RY). Define

Inmax () = 3 [en (IVul* + u?) dz - %fRN |ulP dz and Oy = inf, oy Tmax (1), where

Ninax = {1t € H' (RV)\(0}] (T, (), 1) = 0},

Page3of 17
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Moreover, we have that

Omax = pz;pzS,f% >0. (See Wang [6, Theorems 4.12 and 4.13].)

This paper is organized as follows. First of all, we study the argument of the Nehari
manifold My ,,. Next, we prove that the existence of a positive solution (uo, vo) € M, 5,
of (E;,,). Finally, in Section 4, we show that the condition (A2) affects the number of
positive solutions of (E,  ,); that is, there are at least k critical points (u;,v;) € M, of
Jea such that Jop ,, (u,v) = ﬂé,x,u ((PS)-value) for1 <i <k.

Theorem 1.1 (E, ;) has at least one positive solution (uo, Vo), that is, (E., ) admits at

least one positive solution.
Theorem 1.2 There exist two positive numbers ey and N* such that (E. ;) has at least k

positive solutions for any 0 < & < gy and 0 < h + p < A*, that is, (E.,,,,,) admits at least k

positive solutions.

2 Preliminaries

By studying the argument of Han [7, Lemma 2.1], we obtain the following lemma.

Lemma 2.1 Let Q@ C R (possibly unbounded) be a smooth domain. If u, — u, v, — v

weakly in Hy(R), and u,, — u, v, — v almost everywhere in 2, then

lim /|un—u|°‘|vn—v|’3dz= lim /|u,,|°‘|v,,|‘6dz—/|u|"‘|v|’3dz.
n—00 Q n—00 Q Q

Note that /. ,,, is not bounded from below in H. From the following lemma, we have

that /., is bounded from below on M, ;.
Lemma 2.2 The energy functional J; ;,, is bounded from below on M, ;.

Proof For (u,v) € Mg, by (1.1), we obtain that

1 1 1 1
Jeau(t,v) = (5 - 5) |, v) ||i, + (ZI —;)ANf(sz)|u|“|v|ﬂdz> 0,

where p = « + B. Hence, we have that J;, ,, is bounded from below on M, ,,. d

We define

Ocpn = Inf  Joo . (u,v).
£, 1 ()M, 1 & 'u( ’

Lemma 2.3 (i) There exist positive numbers o and dy such that J., ,(u,v) > dy for

1@V =05
(ii) There exists (u,v) € H\{(0,0)} such that |(u,V)||y > o and J. (4, V) < 0.
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Proof (i) By (1.2), the Holder inequality (p; = p’%q, P = {;’) and the Sobolev embedding
theorem, we have that
1 ) 1 3
Josati) = 3|~ /R SeDlup v dz

- 2/}1@1\1 (rg(e2)|ul? + uh(ez)|v|?) dz

v

1 1 .-
Sl = 285 @l

- ;MaxS;%()» + )| ()| Z,

where p = o + 8 and Max = max{||g||,; ||/ ..}- Hence, there exist positive o and dy such
that J; 5. (6, v) > dy for ||(u,v)||y = 0.
(ii) For any (u,v) € H\{(0, 0)}, since

Tt tn) = = ] -2 f fle2)ul®vlP dz
&M u ] = ) 3 H 2 Jan
t1
- —/ (Ag(e2)|ul? + ph(ez)|v|?) dz,
q JRN

then lim,_, o Je 5, (14, tv) = —00. Fix some (u,v) € H\{(0,0)}, there exists ¢ > 0 such that
|(Eu, tv) || > 0 and Je 5, (Eu, tv) < 0. Let (&, V) = (fu, tv). O

Define
w(% V) = (];,A,# (I/l, V)r (bl, V)>
Then for (u,v) € M, ;,,,, we obtain that
(v ) = 20w} - [ fleaug i’ dz
RN
- q/ (Ag(e2)|ul? + uh(ez)|v|?) dz
RN
~0-a) [ (Geealutt +phteabit) de- -2l @D
- @-a| @) +@-p) /R Feul v dz <0, (2.2)

Lemma 2.4 For each (u,v) € H\{(0,0)}, there exists a unique positive number t,, such
that (tu,vu’ tu,vV) € Ms,A,u and]s,k,n(tu,vu, tu,vv) = SUP;>g ]s,k,u(tu: tv).

Proof Fixed (u,v) € H\{(0,0)}, we consider

R(t) = ]s,A,/L (tur tV)

2 y P p 4
=—|wv|? - = Yyfdz—— | (a 94 1h 1) dz.
5 |l p/RNf(Sz)IuI vl dz q/RN( g(e2)|ul? + uh(ez)|v|7) dz

Page 5 of 17
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Since R(0) = 0, lim;_, o R(t) = —00, by Lemma 2.3(i), then sup,. , R(¢) is achieved at some
tyy > 0. Moreover, we have that R'(¢,,) = 0, that is, (¢,,u,,,v) € M, . Next, we claim
that t,,, is a unique positive number such that R'(t,,,) = 0. Consider

() = || (wv) ||f{ - tp’Z/ flez)|ul”|v|f dz - t‘ﬂ/ (rg(e2)|ul? + ph(ez)|v|?) dz,
RN RN
then R'(t) = tr(¢). Since r(0) = ||(u,v)||% > O,

10 =~p-207 [ fleaup i’ dz
RN
-(g- 2)tq_3/ (kg(ez)|u|q + uh(ez)|v|q) dz <0,
RN

there exists a unique positive number £,, such that r(¢,,) = 0. It follows that R'(¢,,) = 0.

Hence, t,, = t,,. O
Remark 2.5 By Lemma 2.3(i) and Lemma 2.4, then 6., ,, > d, > 0 for some constant dj.

Lemma 2.6 Let (uo,vo) € M, satisfy

]e,)»,u (MOr VO) = min ja,k,u (u) V) = 05,)»,/4;
(u,v)eMg ). 1

then (uo, vo) is a solution of (E; . ;.).

Proof By (2.2), (¥'(u,v),(w,v)) < 0 for (u,v) € M,,,. Since [, ,(uo,vo) =
min(u,v)eM&W Jea(,v), by the Lagrange multiplier theorem, there is T € R such that
Ji 5., (0, v0) = TV (uo, vo) in H™'. Then we have

0 = {J;.,. . (w0, Vo), (o, v0)) = (¥ (s0, Vo), (140, v0))-

It follows that 7 = 0 and J ;. . (#0,v0) =0 in H™. Therefore, (19, vy) is a nontrivial solution
of (ES,A,}J,) and IE,A,H(MOr VO) = QS,A,M- g

3 (PS), -conditionin H for J.  ,
First of all, we define the Palais-Smale (denoted by (PS)) sequence and (PS)-condition in
H for some functional J.

Definition 3.1 (i) For y € R, a sequence {(u,,v,)} is a (PS),-sequence in H for J if
J(ts, V) = y + 0,(1) and J'(u,,, v,,) = 0,,(1) strongly in H™! as n — oo, where H! is the dual
space of H;

(ii) J satisfies the (PS), -condition in H if every (PS), -sequence in H for / contains a

convergent subsequence.

Applying Ekeland’s variational principle and using the same argument as in Cao-Zhou
[8] or Tarantello [9], we have the following lemma.

Lemma 3.2 (i) There exists a (PS)y, , ,-sequence {(tt, Vi)} in Mg, fr Je -
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In order to prove the existence of positive solutions, we want to prove that J;  ,, satisfies
p=2 (Sq,p)P/ P2

the (PS), -condition in H for y € (0, B D)

_ v/ (p—2)
Lemma 3.3 J;, , satisfies the (PS), -condition in H for y € (0, 1’2—; (S(;:f))zw).

Proof Let {(u,,v4)} be a (PS), -sequence in H for J;, , such that ], , (s, v,) = v + 0,(1)
and J, (4, v,) = 0,(1) in H™. Then

|| (4,0, Vi 1,,
Yy t+te+ M > Jeau(tns Vi) — 5(]5,1,#(”;«1,1’;1): (4n, Vn)>
1 1 1 1
(3 ) wmdl+ (G -2 ) [ rteotuiinaz
2 ¢q q p)Jey
q-2 2
2 j“(um Vn)|Hx

where ¢, = 0,(1), d, = 0,(1) as n — oo. It follows that {(u,,v,)} is bounded in H. Hence,
there exist a subsequence {(u,,v,)} and (4, v) € H such that

Uy — U, v, — v weaklyin H' (RN);

Uy — U, v, — v strongly in L} (RV) for any 1 < s < 2%
. N

U, —> U, v, — v ae. inRY,

Moreover, we have that J, ;. u(”’ v) = 0 in H™. We use the Brézis-Lieb lemma to obtain (3.1)
and (3.2) as follows:

/ g(ez)lu, —u|ldz = / g(ez)|u,|?dz - / g(e2)lul?dz + 0,(1); (3.1)

RN RN RN

/ h(ez)|lv, —v|idz = / h(ez)|va|ldz - / h(e2)|v|?dz + 0,(1). (3.2)
RN RN RN

Next, we claim that
/Ng(ez)|u,,—u|qdz—> 0 asm— o0 (3.3)
R
and

/N h(ez)|lv, —v|idz—> 0 asn— oo. (3.4)
R

Since g € L"™(RN), where m = p/(p — q), then for any o > 0, there exists r > 0 such that
N e 2(62 Iz dz < o. By the Holder inequality and the Sobolev embedding theorem, we
BY )8 (e2) y q y g
get

/ g(e2)|u, —ul?dz
RN

5/ ge2)|lu, —ul?dz
BN(0)
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+/ g(e2)lu, —u|ldz
(BN (0))¢

qlp
< ”g”m(/ |un_u|pdz)
BN(0)

r—q

b 7 ) ) q/2
glez)p1 dz |V(u,, - u)| +|u, —ul“dz
BN 01 RN

<C'o+0,(1) (. {u}isboundedin HI(RN) and u, — u in LfOC(RN)).

(S

+S,

Similarly, [ h(e2)|v, — v|?7dz — 0 as n — oo. By (Al) and u, — u, v, — v strongly in
Lt (RN), we have that

/ flez)|u, —ul®|v, —v|P dz = / Sfooltty —u|®|v, —v|P dz = 0,(1). (3.5)
RN RN
Let p, = (4, — u, v, — v). By (3.1)-(3.4) and Lemma 2.1, we deduce that

Ipallzr = (Netalizy + Wvalizg) = (lallZ; + 1VIZ) +0a(1)

= / f(&2) ] |val® dz + f (rg(e2)|un|? + ph(ez)|v,|?) dz
RN RN
—/ f(ez)|u|“|v|’3dz—/ (Ag(sz)|u|q+,uh(8z)|v|q)dz+o,,(1)
RN RN
=/ Sf(eD) |ty — ul* v — VI dz + 0,(1),
RN
and
Sl [ el =, 1P dz =y =) + 0,0 (3.6)
9 nll g O(+ﬂ RN n n e\ u\U, n\1). .

We may assume that

lpall? — 1 and / fle2)uy —ul®lv,—vIPdz— 1 asn— oo. (3.7)
RN
Recall that
2
Sap = (G320 wherep = o + B.

in )
uveH RN\ ([ 12|% |vIP dz)?/P
If /> 0, by (3.5), then
) 2/p
Sepl? = Sop (/ fle2)luy, —ul|*|v, — v|p dz) +0,(1)
RN

2/p
= a,ﬂ(/ foo|un_u|a|Vn_V|ﬂdZ) +0,(1)
RN

< (F) P lIpallz; + 04(1) = (fro)*PL.

Page 8 of 17
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This implies { > (S,,5)”'?~?/(fx,)*#=2. By (3.6) and (3.7), we obtain that

b- 2 (Sa,ﬂ)p/(piz)

B 1 1 / () >
Y= E_]_ﬂ +]5,A,MM,V_?W,

which is a contradiction. Hence, [ = 0, that is, (,, v,) — (4, v) strongly in H. O

4 Existence of k solutions
Let w € HY(RN) be the unique, radially symmetric and positive ground state solution of
equation (E0) in RN, Recall the facts (or see Bahri-Li [10], Bahri-Lions [11], Gidas-Ni-
Nirenberg [12] and Kwong [13]):

(i) w e L2(RN) N C2Y (RN) for some 0 < 6 <1 and limy,|_, o w(2) = 0;

(ii) for any € > 0, there exist positive numbers C;, C5 and C; such that for all z € RN

Cs exp(—(1 + £)lz]) < w(z) < Crexp(-l2)
and

|Vw(z)| < Cexp(-(1 - ¢)lz]).
By Lien-Tzeng-Wang [14], then

Jan(IVW)* + w?) dz

Sp = ( fRN wP dz)2/p

(4.1)

For1 < i<k, we define

i

wf;(z) = w(z - %), wheref(ai) = ma;\crf(z) =1

zeR:

Clearly, w'.(z) € H'(RN).
First of all, we want to prove that

, , -2
lim sup/e,,. (E/awl, t/pw) < p—(Sa,ﬂ)P/ ®-2)  yniformly in i.
e—0* t>0 g Zp
Lemma 4.1 For A >0 and 1 > 0, then
, , -2
lim sup],s,x,ﬂ(t\/&wls,t\/gwi) < p—(Sa,ﬂ)P/(”_z) uniformly in i.
e—07F t>0 B 2[)
Moreover, we have that
p- 2 /(p—
0<Ocppu=< W(Sa,ﬂ)p -2,
Proof Part I: Since J.;,, is continuous in H, J.;,,(0,0) = 0, and {(\/aw’, /Bwi)} is uni-
formly bounded in H for any ¢ > 0 and 1 < i < k, then there exists ¢, > 0 such that for

0<t<tyandanye >0,

. . -2
Jegu (t/awt, t/Bwl) < pz—(Sa,,g)p/(p’Z) uniformly in i.
-p
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From (Al), we have that inf, g~ f(2) > 0. Then

2
Jorn(tand, /B < & /aw, B,
g+
(inf f(z )/ awlely/Bwl’ dz

Ca+ B \zeRN

— —00 ast— o0.

It follows that there exists #; > 0 such that for ¢ > ¢; and any ¢ > 0,
. . -2
Jeu (t\/&w;,t\/ﬁwg) < pz—(Sa,,g)p/(p’D uniformly in i.
P
From now on, we only need to show that

lim  sup Jeu,.(tw) <p—(S 5)P/®=2  uniformly in .
e=>0% po<t<fy 2p

Since
£ to+p a+B-2( a wi
sup(—a— b)z < 5 > ,  wherea,b>0,
20 \ 2 a+pB 2(c + B) ba+B
and by (4.1), then
supl E | (ard B~ S |t
=0 2 &’ & H Ol+,3 RN & &

:p-z[(a+ﬂ)fRN(|vW|2+w2>dz}/2zp—z(s pio-2)
2 L (@8ph fwrdzpr R

For ¢y <t <, by (4.2), we have that
Jonn (/@ t /B = || (Vaw B - f Fea|ant | /B | dz
_ ngN (rglez)|[Vawi|" + uh(sz)’\/ﬁwé |") dz

< F S
/ —f(2))|awl|"|Vaw! |ﬁdz
Since

| (=rea| vt | B d

= a%ﬂg (1-f(ez+a'))wdz=0(1) ase— 0" uniformly in i,
RN

Page 10 of 17
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then

lim sup ]Exﬂ(t\/_wg,t\/iw)<—(5 )72,

e—>0% to<t<ty

that is, for A > 0 and u > 0,
. , -2
lirg sup]s,k,ﬂ(tﬁwg,t\/ﬁwg) < pz—(SD,,,g)”/(”‘z) uniformly in i.
e—0* >0 p

Part II: By Lemma 2.4, there is a number £ > 0 such that (£ /Jaw!,t \/Bw.) € M, ,,
where 1 < i < k. Hence, from the result of Part I, we have that for A >0 and u > 0,

-2

p/(p-2)
2]7 ( a,ﬁ) .

0<Bepp < l1m sup]ew(t\/_ws,t\/_w)f 0

Proofof Theorem 1.1 By Lemma 3.2, there exists a (PS)g, , , -sequence {(u,, v,)} in Mg 5., for
. _ Su,p ) /(p-2)

Jeau- Since 0 < 0, , < p2p2( 5P/ 072 < sz ((fﬁ)zw for A >0 and u > 0, by Lemma 3.3,

there exist a subsequence {(u,,v,)} and (uo,vo) € H such that (u,,v,) — (19, vo) strongly

in H. It is easy to check that (u, o) is a nontrivial solution of (E ;) and ., ,(#0,v0) =

98,)\,[1,' Since ]s,)»,u(umvo) = ]A,u(|u0|, |V0|) and (|M0|, |VO|) € Mé‘,k,;u bY Lemma 2-6; we maY

assume that u#o > 0, vp > 0. Applying the maximum principle, u#o >0 and vo >0 in Q. [J

Choosing 0 < pg < 1 such that

BN (a))NBN (@) =2 fori#jand1<ij<k,
where BY (a)) = {z € RN||z~a'| < po} and f(a’) = max g f(2) = 1, define K ={a'|1 < i < k}
and K> = Uf'(zl po/z(ﬂ ). Suppose Ul lBN (a) C BN(O) for some rg > 0. Let Q; be given
by

Jan x(e2)|u|* |v|P dz

(1, v) =
Qe(,7) Jen lul¥|vIP dz

where x : RN — RY, x(z) = z for |z| <rp and x(z) = roz/|z] for |z| > 1.
For each 1 < i < k, we define

0L, = {(v) € Ml |Qe(u,v) —a'| < po},

90L, , = {(,v) € Mepul|Qe(u,v) = d'| = po},

:f,}»,[l, = lnf ]&)»yll«(u’ V) and lgs AL = lnf ]F,)L,/A (I/l, V)'
()0l u,v)€d 0!

&M &M,

By Lemma 2.4, there exists ¢ > 0 such that (¢ \/aw!,t.\/Bw’) € M, , foreach1 <i <k.
Then we have the following result.

Lemma 4.2 There exists &1 > 0 such that if ¢ € (0,¢1), then Q.(£:\/aw', t:/Bwl) € Ky 2
foreach1<i<k.
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Proof Since

Jen x(€2) Wiz - )P dz

Jon Wz = L)P dz

e xlez + a@)|w(z)lP dz
T v w@Pdz

—a ase— 0%,

Q: (tiv/aw, tiy/Bw,)

there exists g; > 0 such that
Q. (tin/aw, t;\/,gwfs) €K, foranyee(0,61)andeachl <i<k. O
We need the following lemmas to prove that ﬁf\yu < ,Eiu for sufficiently small ¢, A, p.
Lemma 4.3 6y = %(Sa,ﬂ)p/ -2),

Proof From Part I of Lemma 4.1, we obtain sup,. o Imax (E/aW!, t/BW.) = ’;;;(Su,ﬂ)l’/(p‘z)
uniformly in i. Similarly to Lemma 2.4, there is a sequence {s' } C R* such that
(Sinax\/awéfsfnax\/ﬁwé) € Nmax and

. o . . . -2
emax = Imax (Sinax\/&uévsinax\/gulg) = iug]max (t\/&u;, t\/Eui;) = %(Sa,ﬂ)p/@72)~

Let {(#, )} C Nimax be @ minimizing sequence of Opax for Inax. It follows that || (z,, vy,) ||%[ =
S 141 1v,]? diz and

1 2 1
Omax = En(urnvn) ”H —[_7 ./]RN |Mn|a|Vn|ﬁdZ+ 04(1)

p-2 2
T | ns vi) |, + 0 (D).

We may assume that ||(u,, v, — [ and [pn 4, |va|P dz — [ as n — oo, where [

2 -2
%Qmax > 0. By the definition of S, g, then S, g/? < [. We can deduce that S, g < lp7 =
7 ,

p=2 . e _
(5 0max) 7, that is, 52 (S0 ®) < . O
Lemma 4.4 There exists a number &y > 0 such that if (u,v) € N, and I.(4,v) < Omax + 0,
then Q. (u,v) € K,y for any 0 < € < g1.

Proof On the contrary, there exist the sequences {¢,} C R* and {(u,,v,)} C N, such that
&n = 0, I, (U, V) = Omax (> 0) + 0,(1) as 1 — o0 and Q, (44, vy) € K2 for all m e N.
It is easy to check that {(u,,v,)} is bounded in H. Suppose that IRN |t4,|% v |? dz — O as

n — 00. Since
||(u,,,v,,)||2 = / f(€n2)ttn|*|vu|P dz  for each n € N,
RN
then

Omax + 0,(1) = Ian (s Vi) = ( ) / f(gnz)|un|a|vn|ﬁ dz < 0,(1),
RN

1 1
2 p
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which is a contradiction. Thus, f]RN || |valfdz - 0 as n — oo. Similarly to the
concentration-compactness principle (see Lions [15, 16] or Wang [6, Lemma 2.16]), then
there exist a constant ¢y > 0 and a sequence {2,;} C RN such that

o Pl
/ [n] 7 [va] 7 dz > ¢o > 0, (4.3)
BN (551)

where 2 <l <p=a + B <2* and p = {1 - t) + 2*t for some ¢ € (N — 2)/N,1). Let
(t4,(2), Vi(2)) = (n(z + Z), vu(z + Z,)). Then there are a subsequence {(Z,,, V;;)} and (%,7) €
H such that %, — % and v, — ¥ weakly in H'(RN). Using the similar computation of
} C R* such that (s”

Lemma 2.4, there is a sequence {s” U S maxvn) € Ninax and

max max

v -~ v ~ M
0 < Omax < Imax (smaxu,,, SmaXVn) = Imax (Smaxu,,, Smaxvn)

<I, (smaxu,,,smaxvn) < I, (4, Vy) = Omax + 0,(1) asm— oo.

We deduce that a subsequence {s

" ) satisfies sk — so > 0. Then there are a subsequence

{(8p ax s SmaVa)} and (so%,50V) € H such that i, i, — so% and s, v, — sov weakly in
HY(RN). By (4.3), then % # 0 and V # 0. Applying Ekeland’s variational principle, there
exists a (PS)g,,, -sequence {(U,, V,,)} for Imax and (U, — skl Vi — SVl = 0,(1).
Similarly to the proof of Lemma 3.3, there exist a subsequence {(L/,,, V},)} and (Up, Vo) € H
such that U, — Uy, V,, — Vp strongly in HY(RY) and Inax (U, Vo) = Omax. Now, we want
to show that there exists a subsequence {z,} = {¢,2,} such that z, — zp € K.

(i) Claim that the sequence {z,} is bounded in RN. On the contrary, assume that
|z,,| — o0, then

1 2 1
Omax = Imax (Uo, Vo) < E (o, Vo) |, - = /Nfc>o|lf[0|ot|V0|/3 dz
R

<11m1nf|: ma) H( n,vn)”H ma")p/ fenz + z,) |, |* |vn|ﬁdzi|

n—00

—11m1nf|: ma) ||( V)|~ m“*) / fen2) | |vn|5dz]

n—00

‘max “ns Smax

= liminf 1, (.

) <liminfZ, (tts, Vi) = Omaxs
n— 00 n—00

which is a contradiction.
(ii) Claim that zg € K. On the contrary, assume that zy ¢ K, that is, f(zp) < 1 =
max,cpn f(2). Then use the argument of (i) to obtain that

Qmax = ]max(UOx VO) = Imux(SOUO)SO VO)

(50) | Wo, Vo), _ / f20)|Uo || Vol dz

<1lmmf[ ) ) - max’ / Flenz + 2|, Ivnlﬁdz}

n—0o0

S emax;

which is a contradiction.
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Since ||(U, —s
we have that

U, Vi = 88 V)l = 0,(1) and U, — Uy, V,, — Vo strongly in H*(RY),

n
max

Jan X (€n2) (2 = 22)|“ V(2 — 2,)|P dz
Jen|8(z = Z) || V(2 - 2,)|P dz
 Janx(enz + £42,) 1 Uo|* | Vo dz

Jen | Uol* | VolP dz

an (U, V) =

—>z0€K,n asn— oo,

which is a contradiction.
Hence, there exists 8y > 0 such that if (z,v) € N, and I (¢, V) < Opax + 80, then Q. (u,v) €
K,,2 forany 0 < e < ¢;. O

Lemma4.5 If(u,v) € My, and . ., (4, V) < Omax +80/2, then there exists a number A* > 0
such that Qg (u,v) € Ky o forany 0 <e < ey and 0 < + pu < A*.

Proof Using the similar computation in Lemma 2.4, we obtain that there is the unique
positive number

. ( G, )11, )”‘”‘”
© N\ Sanf(eD)ul|vIf dz

such that (s, u,s.v) € N.. We want to show that there exists Ay > 0 such thatif 0 <A + u <
Ay, then s, < ¢ for some constant ¢ > 0 (independent of # and v). First, for (u,v) € My, .,

0< dO < 0&‘,)\,/_1. S]s,k,;t(”, V) =< Hmax + 60/2
Since Ué,x,u(% v), (u,v)) = 0, then

Qmax + 50 /2 Z ]8,)»,[1, (I/l, V)

1 1 1 1
(-l (5-3) femrre

q-2 . 2q
LS W thatis, v, <a= 3Ot/ (44)

and

dO < ]S,A,ﬂ (ur V)

= (% —é) || (u, V)Hil - (%] —}9) /Q(Ag(sz)|u|q + uh(sz)|v|q) dz
p-2 . 2p
< W || (u, v)| f{, that is, H(u, V) ||i[ >y = — zdo. (4.5)

Moreover, we have that

f fle2ul* WP dz = | v}, - f (rg(e2)lul? + ph(e2)|vI?) dz
Q RN

_q
>y —Max S, 2 (A + M)cflz,
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where Max = max{||g|| [|/]l,}. It follows that there exists Ay > O such that for 0 < 1 +
n< Ao

_q
/ fe2)|ul*v|P dz > ¢, —Max S, (A + w)(c)?? > 0. (4.6)
RN

Hence, by (4.4), (4.5) and (4.6), s, < ¢ for some constant ¢ > 0 (independent of # and v) for
0 <A+ i < Ag. Now, we obtain that

emax + 80/2 = ]&:,A,u (u: V) = SUP]s,)\,M(W’ tV) = ]S,A,;L(Ssur SSV)

t>0

1 1
= 5” (S, 5¢V) ||121— —/ flez)|seul®|s.v|? dz
P JRN
1
- —/ ()»g(sz)|s£u|q + poh(sz)lsgv|q) dz
q JrN

1
> I.(scu,s.v) — — / (Ag(ez)|s5u|q + //,h(sz)|s€v|q) dz.
q JrN
From the above inequality, we deduce that forany 0 <& <& and 0 < A + . < Ay,
1
L. (sp14,8:V) < Omax + 80/2 + — / (Ag(sz)|sgu|q + ,uh(sz)|ssv|q) dz
q JRN

< Bmax + 80/2 + Max(A + M)S;% || (Sett,85V) ||Z

< Ouman + 80/2 + Max Sy (0 + j0)c?(c) .
Hence, there exists A* € (0, Ag) such that for 0 < A + u < A*,
I (sct4,8:V) < Omax + 80, Where (sq1,5.v) € N,.
By Lemma 4.4, we obtain

Jan x(€2)|su|*|s.v|P dz
fRN |scul®|scv|P dz

Qs (et 85V) = Kpor2s

or Q.(u,v) e K,yp foranyO<e <ggand 0 < A + < A*. O

Since fy <1, then by Lemma 4.3,

_p-2 (p-2) P2 (Sap)P' 02
Omax = 2w (Sa,ﬂ)p < 2 (foo)Z/(p"z) . (4.7)
By Lemmas 4.1, 4.2 and (4.7), forany 0 < & < g9 (< 1) and 0 < X + o < A%,
i i P i D=2 (Sep) 2
ﬂs,k,;t = ]E;)»»M (ts «/&We, te \/Bwe) b (4‘8)

< W ()22

Applying above Lemma 4.5, we get that

E;A’M > Omax +80/2 foranyO<e<egpand 0 <A+ pu <A™, (4.9)
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For each 1 <i < k, by (4.8) and (4.9), we obtain that
:35,1,# < BZ,A.M foranyO<e<goand O <A+ pu <A™
It follows that

inf  Jo,u(u,v) foranyO<e<egpand O <A+ pu <A™

(u,v)eOi’)‘#UBO‘S,A, "

i _
el

Then applying Ekeland’s variational principle and using the standard computation, we
have the following lemma.

Lemma 4.6 Foreach 1 <i <k, thereisa (PS)ﬂiA -sequence {(u,,v,)} C Oé)w in H for
&M e

]S,)\.,[L‘
Proof See Cao-Zhou [8]. O

Proof of Theorem 1.2 For any 0 < € < &y and 0 < A + & < A¥, by Lemma 4.6, there is a
(PS)4i _ -sequence {(t,va)} C O, . for Je,,, where 1 <i < k. By (4.8), we obtain that
&, i

p- 2 (Sa,ﬂ)p/(p_z)

i
Peon< =y oy

. . . 9 (Sg.p)P/®2
Since J; 5, satisfies the (PS), -condition for y € (oo, 1’2—; (%’f)z%), then J, 5, has at least

k critical points in M, ; ,, for any 0 < & < g and 0 < A + p < A*. Set u, = max{u,0} and
v, = max{v, 0}. Replace the terms fRNf(sz)|u|°‘|v|ﬂ dz and fRN (rg(e2)|u|? + nh(ez)|v|?) dz
of the functional J; 5, ,, by [en f (sz)ui‘v’f dzand [pn (Ag(e2)ul + uh(e2)vl) dz, respectively. It
follows that (E, 5 ,,) has k nonnegative solutions. Applying the maximum principle, (E; )
admits at least k positive solutions. d
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