27 research outputs found

    Extracorporeal photopheresis for the treatment of graft rejection in 33 adult kidney transplant recipients

    Get PDF
    Background - Extracorporeal photopheresis (ECP) has shown encouraging results in the prevention of allograft rejection in heart transplantation. However, the role of ECP in kidney transplant (KT) rejection needs to be determined. Methods - This multicentre retrospective study included 33 KT recipients who were treated with ECP for allograft rejection (23 acute antibody-mediated rejections (AMRs), 2 chronic AMRs and 8 acute cellular rejections (ACRs)). The ECP indications were KT rejection in patients who were resistant to standard therapies (n = 18) or in patients for whom standard therapies were contraindicated because of concomitant infections or cancers (n = 15). Results - At 12 months (M12) post-ECP, 11 patients (33%) had a stabilization of kidney function with a graft survival rate of 61%. The Banff AMR score (g + ptc + v) was a risk factor for graft loss at M12 (HR 1.44 [1.01-2.05], p < 0.05). The factorial mixed data analysis identified 2 clusters. Patients with a functional graft at M12 tended to have cellular and/or chronic rejections. Patients with graft loss at M12 tended to have acute rejections and/or AMR; higher serum creatinine levels; DSA levels and histologic scores of AMR; and a longer delay between the rejection and ECP start than those of patients with functional grafts. Conclusions - ECP may be helpful to control ACR or moderate AMR in KT recipients presenting concomitant opportunistic infections or malignancies when it is initiated early

    Micromechanical Properties of Injection-Molded Starch–Wood Particle Composites

    Get PDF
    The micromechanical properties of injection molded starch–wood particle composites were investigated as a function of particle content and humidity conditions. The composite materials were characterized by scanning electron microscopy and X-ray diffraction methods. The microhardness of the composites was shown to increase notably with the concentration of the wood particles. In addition,creep behavior under the indenter and temperature dependence were evaluated in terms of the independent contribution of the starch matrix and the wood microparticles to the hardness value. The influence of drying time on the density and weight uptake of the injection-molded composites was highlighted. The results revealed the role of the mechanism of water evaporation, showing that the dependence of water uptake and temperature was greater for the starch–wood composites than for the pure starch sample. Experiments performed during the drying process at 70°C indicated that the wood in the starch composites did not prevent water loss from the samples.Peer reviewe

    Zur Reinigung des Wasserstoffes

    No full text
    corecore