120 research outputs found

    Neutralizing antibody titers against dengue virus correlate with protection from symptomatic infection in a longitudinal cohort.

    Get PDF
    This is the author accepted manuscript. The final version is available from National Academy of Sciences via http://dx.doi.org/10.1073/pnas.1522136113The four dengue virus serotypes (DENV1-4) are mosquito-borne flaviviruses that infect ∼ 390 million people annually; up to 100 million infections are symptomatic, and 500,000 cases progress to severe disease. Exposure to a heterologous DENV serotype, the specific infecting DENV strains, and the interval of time between infections, as well as age, ethnicity, genetic polymorphisms, and comorbidities of the host, are all risk factors for severe dengue. In contrast, neutralizing antibodies (NAbs) are thought to provide long-lived protection against symptomatic infection and severe dengue. The objective of dengue vaccines is to provide balanced protection against all DENV serotypes simultaneously. However, the association between homotypic and heterotypic NAb titers and protection against symptomatic infection remains poorly understood. Here, we demonstrate that the titer of preinfection cross-reactive NAbs correlates with reduced likelihood of symptomatic secondary infection in a longitudinal pediatric dengue cohort in Nicaragua. The protective effect of NAb titers on infection outcome remained significant when controlled for age, number of years between infections, and epidemic force, as well as with relaxed or more stringent criteria for defining inapparent DENV infections. Further, individuals with higher NAb titers immediately after primary infection had delayed symptomatic infections compared with those with lower titers. However, overall NAb titers increased modestly in magnitude and remained serotype cross-reactive in the years between infections, possibly due to reexposure. These findings establish that anti-DENV NAb titers correlate with reduced probability of symptomatic DENV infection and provide insights into longitudinal characteristics of antibody-mediated immunity to DENV in an endemic setting.This work was supported by the FIRST (Fighting Infections through Research, Science, and Technology) grant from the Bill and Melinda Gates Foundation and the Instituto Carlos Slim de la Salud (to E.H.) and the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (NIH) Grants R01 AI099631 (to A.B.) and P01 AI106695 (to E.H.). The Nicaraguan Pediatric Dengue Cohort Study was also supported by Pediatric Dengue Vaccine Initiative Grant VE-1 (to E.H.). L.C.K. was supported by the Gates Cambridge Scholarship Programme and the NIH Oxford-Cambridge Scholars Program

    SATB1 Defines the Developmental Context for Gene Silencing by Xist in Lymphoma and Embryonic Cells

    Get PDF
    SummaryThe noncoding Xist RNA triggers silencing of one of the two female X chromosomes during X inactivation in mammals. Gene silencing by Xist is restricted to a special developmental context in early embryos and specific hematopoietic precursors. Here, we show that Xist can initiate silencing in a lymphoma model. We identify the special AT-rich binding protein SATB1 as an essential silencing factor. Loss of SATB1 in tumor cells abrogates the silencing function of Xist. In lymphocytes Xist localizes along SATB1-organized chromatin and SATB1 and Xist influence each other's pattern of localization. SATB1 and its homolog SATB2 are expressed during the initiation window for X inactivation in ES cells. Importantly, viral expression of SATB1 or SATB2 enables gene silencing by Xist in embryonic fibroblasts, which normally do not provide an initiation context. Thus, our data establish SATB1 as a crucial silencing factor contributing to the initiation of X inactivation

    High-Throughput Sequencing Enhanced Phage Display Identifies Peptides That Bind Mycobacteria

    Get PDF
    Bacterial cell wall components have been previously used as infection biomarkers detectable by antibodies. However, it is possible that the surface of the Mycobacterium tuberculosis (M. tb), the causative agent of tuberculosis (TB), also possesses molecules which might be non-antigenic. This makes the probing of biomarkers on the surface of M. tb cell wall difficult using antibodies. Here we demonstrate the use of phage display technology to identify peptides that bind to mycobacteria. We identified these clones using both random clone picking and high throughput sequencing. We demonstrate that random clone picking does not necessarily identify highly enriched clones. We further showed that the clone displaying the CPLHARLPC peptide which was identified by Illumina sequencing as the most enriched, binds better to mycobacteria than three clones selected by random picking. Using surface plasmon resonance, we showed that chemically synthesised CPLHARLPC peptide binds to a 15 KDa peptide from M.tb H37Rv whole cell lysates. These observations demonstrate that phage display technology combined with high-throughput sequencing is a powerful tool to identify peptides that can be used for investigating potential non-antigenic biomarkers for TB and other bacterial infections

    Effects of infection history on dengue virus infection and pathogenicity

    Get PDF
    The understanding of immunological interactions among the four dengue virus (DENV) serotypes and their epidemiological implications is often hampered by the lack of individuallevel infection history. Using a statistical framework that infers full infection history, we analyze a prospective pediatric cohort in Nicaragua to characterize how infection history modulates the risks of DENV infection and subsequent clinical disease. After controlling for age, one prior infection is associated with 54% lower, while two or more are associated with 91% higher, risk of a new infection, compared to DENV-naive children. Children >8 years old have 55% and 120% higher risks of infection and subsequent disease, respectively, than their younger peers. Among children with ≥1 prior infection, intermediate antibody titers increase, whereas high titers lower, the risk of subsequent infection, compared with undetectable titers. Such complex dependency needs to be considered in the design of dengue vaccines and vaccination strategies

    Single-reaction, multiplex, real-time rt-PCR for the detection, quantitation, and serotyping of dengue viruses.

    Get PDF
    open15siThis research was supported by the National Institutes of Health grant 1 RC4 TW008781-01. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Background: Dengue fever results from infection with one or more of four different serotypes of dengue virus (DENV). Despite the widespread nature of this infection, available molecular diagnostics have significant limitations. The aim of this study was to develop a multiplex, real-time, reverse transcriptase-PCR (rRT-PCR) for the detection, quantitation, and serotyping of dengue viruses in a single reaction. Methodology/Principal Findings: An rRT-PCR assay targeting the 5 9 untranslated region and capsid gene of the DENV genome was designed using molecular beacons to provide serotype specificity. Using reference DENV strains, the assay was linear from 7.0 to 1.0 log 10 cDNA equivalents/ m L for each serotype. The lower limit of detection using genomic RNA was 0.3, 13.8, 0.8, and 12.4 cDNA equivalents/ m L for serotypes 1–4, respectively, which was 6- to 275-fold more analytically sensitive than a widely used hemi-nested RT-PCR. Using samples from Nicaragua collected within the first five days of illness, the multiplex rRT-PCR was positive in 100% (69/69) of specimens that were positive by the hemi-nested assay, with full serotype agreement. Furthermore, the multiplex rRT-PCR detected DENV RNA in 97.2% (35/36) of specimens from Sri Lanka positive for anti-DENV IgM antibodies compared to just 44.4% (16/36) by the hemi-nested RT-PCR. No amplification was observed in 80 clinical samples sent for routine quantitative hepatitis C virus testing or when genomic RNA from other flaviviruses was tested. Conclusions/Significance: This single-reaction, quantitative, multiplex rRT-PCR for DENV serotyping demonstrates superior analytical and clinical performance, as well as simpler workflow compared to the hemi-nested RT-PCR reference. In particular, this multiplex rRT-PCR detects viral RNA and provides serotype information in specimens collected more than five days after fever onset and from patients who had already developed anti-DENV IgM antibodies. The implementation of this assay in dengue-endemic areas has the potential to improve both dengue diagnosis and epidemiologic surveillance.openWaggoner JJ;Abeynayake J;Sahoo MK;Gresh L;Tellez Y;Gonzalez K;Ballesteros G;Pierro AM;Gaibani P;Guo FP;Sambri V;Balmaseda A;Karunaratne K;Harris E;Pinsky BAWaggoner JJ;Abeynayake J;Sahoo MK;Gresh L;Tellez Y;Gonzalez K;Ballesteros G;Pierro AM;Gaibani P;Guo FP;Sambri V;Balmaseda A;Karunaratne K;Harris E;Pinsky B

    Un llamado ético a la inclusión de mujeres embarazadas en investigación: Reflexiones del Foro Global de Bioética en Investigación

    Get PDF
    El Foro Global de Bioética en Investigación (GFBR por sus siglas en inglés) se reunió el 3 y 4 de noviembre en Buenos Aires, Argentina, con el objetivo de discutir la ética de la investigación con mujeres embarazadas. El GFBR es una plataforma mundial que congrega a actores clave con el objetivo de promover la investigación realizada de manera ética, fortalecer la ética de la investigación en salud, particularmente en países de ingresos bajos y medios, y promover colaboración entre países del norte y del sur.a Los participantes en el GFBR provenientes de Latinoamérica incluyeron a eticistas, investigadores, miembros de comités de ética y representantes de autoridades sanitarias provenientes de Argentina, Brasil, Chile, Colombia, Ecuador, El Salvador, Guatemala, Honduras, Panamá, Perú, Nicaragua y la República Dominicana. Una legítima preocupación por la protección de las mujeres embarazadas y sus embriones o fetos ha llevado a la mayoría de los países de la Región de las Américas a limitar la realización de estudios con mujeres embarazadas exclusivamente a aquellos estudios específicos sobre el embarazo, y a requerir la exclusión sistemática de las mujeres embarazadas o de las mujeres que quedan embarazadas en el curso del estudio. Ciertamente, a lo largo de la historia de la ética de la investigación, se ha creído erróneamente que proteger a una población es sinónimo de excluirla de los estudios. Se sabe ahora que proceder así implica exponer a riesgos mucho mayores a la población que se busca proteger. El embarazo implica cambios fisiológicos sustantivos e impacta profundamente la manera como el cuerpo metaboliza los medicamentos. Sin embargo, por evitar hacer investigación con mujeres embarazadas, no se ha producido la evidencia científica necesaria para tomar decisiones sobre tratamientos e intervenciones preventivas con dosis eficaces y seguras para ellas y sus embriones o fetos. A manera de ilustración, en el 2001 había en los Estados Unidos apenas más de una docena de medicamentos aprobados para uso en el embarazo (1) y en el 2011 la Food and Drug Administration (FDA) aprobó por primera vez en 15 años un medicamento para su uso en el embarazo (2). Como consecuencia de no haber producido la evidencia necesaria, se pone en riesgo la salud de las mujeres embarazadas cada vez que se les da atención médica. Las mujeres embarazadas se enferman y las mujeres enfermas se embarazan, y no se sabe si los medicamentos que se les da son eficaces o siquiera seguros para ellas y sus embriones o fetos

    Hepatic Stem-like Phenotype and Interplay of Wnt/β-Catenin and Myc Signaling in Aggressive Childhood Liver Cancer

    Get PDF
    SummaryHepatoblastoma, the most common pediatric liver cancer, is tightly linked to excessive Wnt/β-catenin signaling. Here, we used microarray analysis to identify two tumor subclasses resembling distinct phases of liver development and a discriminating 16-gene signature. β-catenin activated different transcriptional programs in the two tumor types, with distinctive expression of hepatic stem/progenitor markers in immature tumors. This highly proliferating subclass was typified by gains of chromosomes 8q and 2p and upregulated Myc signaling. Myc-induced hepatoblastoma-like tumors in mice strikingly resembled the human immature subtype, and Myc downregulation in hepatoblastoma cells impaired tumorigenesis in vivo. Remarkably, the 16-gene signature discriminated invasive and metastatic hepatoblastomas and predicted prognosis with high accuracy

    Influenza and respiratory syncytial virus in infants study (IRIS) of hospitalized and non-ill infants aged <1 year in four countries: study design and methods

    Get PDF
    Abstract Background This multi-country prospective study of infants aged <1 year aims to assess the frequency of influenza virus and respiratory syncytial virus (RSV) infections associated with hospitalizations, to describe clinical features and antibody response to infection, and to examine predictors of very severe disease requiring intensive care. Methods/Design We are enrolling a hospital-based cohort and a sample of non-ill infants in four countries (Albania, Jordan, Nicaragua, and the Philippines) using a common protocol. We are currently starting year 2 of a 2- to 3-year study and will enroll approximately 3,000 infants hospitalized for any acute illness (respiratory or non-respiratory) during periods of local influenza and/or RSV circulation. After informed consent and within 24 h of admission, we collect blood and respiratory specimens and conduct an interview to assess socio-demographic characteristics, medical history, and symptoms of acute illness (onset ≤10 days). Vital signs, interventions, and medications are documented daily through medical record abstraction. A follow-up health assessment and collection of convalescent blood occurs 3-5 weeks after enrollment. Influenza and RSV infection is confirmed by singleplex real time reverse transcriptase polymerase chain reaction (rRT-PCR) assays. Serologic conversion will be assessed comparing acute and convalescent sera using hemagglutination inhibition assay for influenza antibodies and enzyme-linked immunosorbent assay (ELISA) for RSV. Concurrent with hospital-based enrollment, respiratory specimens are also being collected (and tested by rRT-PCR) from approximately 1,400 non-ill infants aged <1 year during routine medical or preventive care. Discussion The Influenza and RSV in Infants Study (IRIS) promises to expand our knowledge of the frequency, clinical features, and antibody profiles of serious influenza and RSV disease among infants aged <1 year, quantify the proportion of infections that may be missed by traditional surveillance, and inform decisions about the potential value of existing and new vaccines and other prevention and treatment strategies.https://deepblue.lib.umich.edu/bitstream/2027.42/136185/1/12879_2017_Article_2299.pd
    corecore