458 research outputs found

    Enrichment and association of lead and bacteria at particulate surfaces in a salt-marsh surface layer

    Get PDF
    The particle-laden surface layer (~ 150-370 µm) and subsurface waters of a South San Francisco Bay salt marsh were sampled over two tidal cycles and analyzed for particle numbers and particulate-associated and total concentrations of lead and bacteria…

    Topological complexity of the relative closure of a semi-Pfaffian couple

    Full text link
    Gabrielov introduced the notion of relative closure of a Pfaffian couple as an alternative construction of the o-minimal structure generated by Khovanskii's Pfaffian functions. In this paper, use the notion of format (or complexity) of a Pfaffian couple to derive explicit upper-bounds for the homology of its relative closure. Keywords: Pfaffian functions, fewnomials, o-minimal structures, Betti numbers.Comment: 12 pages, 1 figure. v3: Proofs and bounds have been slightly improve

    Parametrization of Adsorption Isotherms to Data Collected by Adsorbate Concentration Difference

    Full text link
    33 pages, 1 article*Parametrization of Adsorption Isotherms to Data Collected by Adsorbate Concentration Difference* (Lindner, S. R.; Schwager, S. J.; Lion, L. W.) 33 page

    Osmosis with active solutes

    Get PDF
    Despite much current interest in active matter, little is known about osmosis in active systems. Using molecular dynamics simulations, we investigate how active solutes perturb osmotic steady states. We find that solute activity increases the osmotic pressure, and can also expel solvent from the solution - i.e. cause reverse osmosis. The latter effect cannot be described by an effective temperature, but can be reproduced by mapping the active solution onto a passive one with the same degree of local structuring as the passive solvent component. Our results provide a basic framework for understanding active osmosis, and suggest that activity-induced structuring of the passive component may play a key role in the physics of active-passive mixtures.Comment: 6 page

    Self-Organization, Layered Structure, and Aggregation Enhance Persistence of a Synthetic Biofilm Consortium

    Get PDF
    Microbial consortia constitute a majority of the earth’s biomass, but little is known about how these cooperating communities persist despite competition among community members. Theory suggests that non-random spatial structures contribute to the persistence of mixed communities; when particular structures form, they may provide associated community members with a growth advantage over unassociated members. If true, this has implications for the rise and persistence of multi-cellular organisms. However, this theory is difficult to study because we rarely observe initial instances of non-random physical structure in natural populations. Using two engineered strains of Escherichia coli that constitute a synthetic symbiotic microbial consortium, we fortuitously observed such spatial self-organization. This consortium forms a biofilm and, after several days, adopts a defined layered structure that is associated with two unexpected, measurable growth advantages. First, the consortium cannot successfully colonize a new, downstream environment until it selforganizes in the initial environment; in other words, the structure enhances the ability of the consortium to survive environmental disruptions. Second, when the layered structure forms in downstream environments the consortium accumulates significantly more biomass than it did in the initial environment; in other words, the structure enhances the global productivity of the consortium. We also observed that the layered structure only assembles in downstream environments that are colonized by aggregates from a previous, structured community. These results demonstrate roles for self-organization and aggregation in persistence of multi-cellular communities, and also illustrate a role for the techniques of synthetic biology in elucidating fundamental biological principles

    The Real Symplectic Groups in Quantum Mechanics and Optics

    Get PDF
    text of abstract (We present a utilitarian review of the family of matrix groups Sp(2n,)Sp(2n,\Re), in a form suited to various applications both in optics and quantum mechanics. We contrast these groups and their geometry with the much more familiar Euclidean and unitary geometries. Both the properties of finite group elements and of the Lie algebra are studied, and special attention is paid to the so-called unitary metaplectic representation of Sp(2n,)Sp(2n,\Re). Global decomposition theorems, interesting subgroups and their generators are described. Turning to nn-mode quantum systems, we define and study their variance matrices in general states, the implications of the Heisenberg uncertainty principles, and develop a U(n)-invariant squeezing criterion. The particular properties of Wigner distributions and Gaussian pure state wavefunctions under Sp(2n,)Sp(2n,\Re) action are delineated.)Comment: Review article 43 pages, revtex, no figures, replaced because somefonts were giving problem in autometic ps generatio

    Proposed diagnostic criteria for classical CMML, CMML variants and pre-CMML conditions

    Get PDF
    Chronic myelomonocytic leukemia (CMML) is a myeloid neoplasm characterized by dysplasia, abnormal production and accumulation of monocytic cells and an elevated risk to transform into acute leukemia. Over the past two decades, our knowledge about the pathogenesis and molecular mechanisms in CMML has increased substantially. In parallel, better diagnostic criteria and therapeutic strategies have been developed. However, many questions remain regarding prognostication and optimal therapy. In addition, there is a need to define potential pre-phases of CMML and special CMML variants, and to separate these entities from each other and from conditions mimicking CMML. To address these unmet needs, an international consensus group met in a Working Conference in August 2018 and discussed open questions and issues around CMML, its variants, and pre-CMML conditions. The outcomes of this meeting are summarized herein and include diagnostic criteria and a proposed classification of pre-CMML conditions as well as refined minimal diagnostic criteria for classical CMML and special CMML variants, including oligomonocytic CMML and CMML associated with systemic mastocytosis. Moreover, we propose diagnostic standards and tools to delineate between normal, pre-CMML and CMML entities. These criteria and standards should facilitate diagnostic and prognostic evaluations in daily practice and clinical studies in applied hematology
    corecore