1,744 research outputs found
Influence of the Dufour effect on convection in binary gas mixtures
Linear and nonlinear properties of convection in binary fluid layers heated
from below are investigated, in particular for gas parameters. A Galerkin
approximation for realistic boundary conditions that describes stationary and
oscillatory convection in the form of straight parallel rolls is used to
determine the influence of the Dufour effect on the bifurcation behaviour of
convective flow intensity, vertical heat current, and concentration mixing. The
Dufour--induced changes in the bifurcation topology and the existence regimes
of stationary and traveling wave convection are elucidated. To check the
validity of the Galerkin results we compare with finite--difference numerical
simulations of the full hydrodynamical field equations. Furthermore, we report
on the scaling behaviour of linear properties of the stationary instability.Comment: 14 pages and 10 figures as uuencoded Postscript file (using uufiles
Influence of the Soret effect on convection of binary fluids
Convection in horizontal layers of binary fluids heated from below and in
particular the influence of the Soret effect on the bifurcation properties of
extended stationary and traveling patterns that occur for negative Soret
coupling is investigated theoretically. The fixed points corresponding to these
two convection structures are determined for realistic boundary conditions with
a many mode Galerkin scheme for temperature and concentration and an accurate
one mode truncation of the velocity field. This solution procedure yields the
stable and unstable solutions for all stationary and traveling patterns so that
complete phase diagrams for the different convection types in typical binary
liquid mixtures can easily be computed. Also the transition from weakly to
strongly nonlinear states can be analyzed in detail. An investigation of the
concentration current and of the relevance of its constituents shows the way
for a simplification of the mode representation of temperature and
concentration field as well as for an analytically manageable few mode
description.Comment: 30 pages, 12 figure
An H2CO 6cm Maser Pinpointing a Possible Circumstellar Torus in IRAS18566+0408
We report observations of 6cm, 3.6cm, 1.3cm, and 7mm radio continuum,
conducted with the Very Large Array towards IRAS18566+0408, one of the few
sources known to harbor H2CO 6cm maser emission. Our observations reveal that
the emission is dominated by an ionized jet at cm wavelengths. Spitzer/IRAC
images from GLIMPSE support this interpretation, given the presence of 4.5um
excess emission at approximately the same orientation as the cm continuum. The
7mm emission is dominated by thermal dust from a flattened structure almost
perpendicular to the ionized jet, thus, the 7mm emission appears to trace a
torus associated with a young massive stellar object. The H2CO 6cm maser is
coincident with the center of the torus-like structure. Our observations rule
out radiative pumping via radio continuum as the excitation mechanism for the
H2CO 6cm maser in IRAS18566+0408.Comment: 20 pages, 4 figures, ApJ (in press
Herschel observations of gamma-ray burst host galaxies: implications for the topology of the dusty interstellar medium
Long-duration gamma-ray bursts (GRBs) are indisputably related to star
formation, and their vast luminosity in gamma rays pin-points regions of star
formation independent of galaxy mass. As such, GRBs provide a unique tool for
studying star forming galaxies out to high-z independent of luminosity. Most of
our understanding of the properties of GRB hosts (GRBHs) comes from optical and
near-infrared (NIR) follow-up observations, and we therefore have relatively
little knowledge of the fraction of dust-enshrouded star formation that resides
within GRBHs. Currently ~20% of GRBs show evidence of significant amounts of
dust along the line of sight to the afterglow through the host galaxy, and
these GRBs tend to reside within redder and more massive galaxies than GRBs
with optically bright afterglows. In this paper we present Herschel
observations of five GRBHs with evidence of being dust-rich, targeted to
understand the dust attenuation properties within GRBs better. Despite the
sensitivity of our Herschel observations, only one galaxy in our sample was
detected (GRBH 070306), for which we measure a total star formation rate (SFR)
of ~100Mstar/yr, and which had a relatively high stellar mass
(log[Mstar]=10.34+0.09/-0.04). Nevertheless, when considering a larger sample
of GRBHs observed with Herschel, it is clear that stellar mass is not the only
factor contributing to a Herschel detection, and significant dust extinction
along the GRB sightline (A_{V,GRB}>1.5~mag) appears to be a considerably better
tracer of GRBHs with high dust mass. This suggests that the extinguishing dust
along the GRB line of sight lies predominantly within the host galaxy ISM, and
thus those GRBs with A_{V,GRB}>1~mag but with no host galaxy Herschel
detections are likely to have been predominantly extinguished by dust within an
intervening dense cloud.Comment: 14 pages, 7 figures. Accepted for publication in A&
A New Galactic 6cm Formaldehyde Maser
We report the detection of a new H2CO maser in the massive star forming
region G23.71-0.20 (IRAS 18324-0820), i.e., the fifth region in the Galaxy
where H2CO maser emission has been found. The new H2CO maser is located toward
a compact HII region, and is coincident in velocity and position with 6.7 GHz
methanol masers and with an IR source as revealed by Spitzer/IRAC GLIMPSE data.
The coincidence with an IR source and 6.7 GHz methanol masers suggests that the
maser is in close proximity to an embedded massive protostar. Thus, the
detection of H2CO maser emission toward G23.71-0.20 supports the trend that
H2CO 6cm masers trace molecular material very near young massive stellar
objects.Comment: Accepted for publication in The Astrophysical Journal Letter
Numerical evolution of multiple black holes with accurate initial data
We present numerical evolutions of three equal-mass black holes using the
moving puncture approach. We calculate puncture initial data for three black
holes solving the constraint equations by means of a high-order multigrid
elliptic solver. Using these initial data, we show the results for three black
hole evolutions with sixth-order waveform convergence. We compare results
obtained with the BAM and AMSS-NCKU codes with previous results. The
approximate analytic solution to the Hamiltonian constraint used in previous
simulations of three black holes leads to different dynamics and waveforms. We
present some numerical experiments showing the evolution of four black holes
and the resulting gravitational waveform.Comment: Published in PR
Evolution of dust and ice features around FU Orionis objects
(abridged) We present spectroscopy data for a sample of 14 FUors and 2 TTauri
stars observed with the Spitzer Space Telescope or with the Infrared Space
Observatory (ISO). Based on the appearance of the 10 micron silicate feature we
define 2 categories of FUors. Objects showing the silicate feature in
absorption (Category 1) are still embedded in a dusty and icy envelope. The
shape of the 10 micron silicate absorption bands is compared to typical dust
compositions of the interstellar medium and found to be in general agreement.
Only one object (RNO 1B) appears to be too rich in amorphous pyroxene dust, but
a superposed emission feature can explain the observed shape. We derive optical
depths and extinction values from the silicate band and additional ice bands at
6.0, 6.8 and 15.2 micron. In particular the analysis of the CO_2 ice band at
15.2 micron allows us to search for evidence for ice processing and constrains
whether the absorbing material is physically linked to the central object or in
the foreground. For objects showing the silicate feature in emission (Category
2), we argue that the emission comes from the surface layer of accretion disks.
Analyzing the dust composition reveals that significant grain growth has
already taken place within the accretion disks, but no clear indications for
crystallization are present. We discuss how these observational results can be
explained in the picture of a young, and highly active accretion disk. Finally,
a framework is proposed as to how the two categories of FUors can be understood
in a general paradigm of the evolution of young, low-mass stars. Only one
object (Parsamian 21) shows PAH emission features. Their shapes, however, are
often seen toward evolved stars and we question the object's status as a FUor
and discuss other possible classifications.Comment: accepted for publication in ApJ; 63 pages preprint style including 8
tables and 24 figure
Convection in colloidal suspensions with particle-concentration-dependent viscosity
The onset of thermal convection in a horizontal layer of a colloidal
suspension is investigated in terms of a continuum model for binary-fluid
mixtures where the viscosity depends on the local concentration of colloidal
particles. With an increasing difference between the viscosity at the warmer
and the colder boundary the threshold of convection is reduced in the range of
positive values of the separation ratio psi with the onset of stationary
convection as well as in the range of negative values of psi with an
oscillatory Hopf bifurcation. Additionally the convection rolls are shifted
downwards with respect to the center of the horizontal layer for stationary
convection (psi>0) and upwards for the Hopf bifurcation (psi<0).Comment: 8 pages, 6 figures, submitted to European Physical Journal
- …
