837 research outputs found
The Submissive, the Angel, and the Mad Woman in District 12: Feminine Identity in Suzanne Collins’s The Hunger Games
The social roles women are given in literature are often debated by critics. This essay discusses the treatment and perceptions of female characters in Suzanne Collins’s The Hunger Games trilogy. Throughout the trilogy, the male characters shape the identities of the female characters through language and enforcing Western gender roles. Katniss, Prim, and their mother each fill different roles typically assigned to women. Katniss is a submissive female; Prim is the innocent angel in the household; and their mother portrays a mad woman that cannot cope with reality. These characters—Katniss in particular—are often misconstrued by audiences and critics. Katniss is often described as a brave, independent, strong lead female character. However, this role is debatable. This essay utilizes feminist theory to examine the roles the female characters are given in the novels in order to argue the women are forced into stereotypical gender roles
Correlations in liquid water for the TIP3P-Ewald, TIP4P-2005, TIP5P-Ewald, and SWM4-NDP models.
Water is one of the simplest molecules in existence, but also one of the most important in biological and engineered systems. However, understanding the structure and dynamics of liquid water remains a major scientific challenge. Molecular dynamics simulations of liquid water were performed using the water models TIP3P-Ewald, TIP4P-2005, TIP5P-Ewald, and SWM4-NDP to calculate the radial distribution functions (RDFs), the relative angular distributions, and the excess enthalpies, entropies, and free energies. In addition, lower-order approximations to the entropy were considered, identifying the fourth-order approximation as an excellent estimate of the full entropy. The second-order and third-order approximations are ~20% larger and smaller than the true entropy, respectively. All four models perform very well in predicting the radial distribution functions, with the TIP5P-Ewald model providing the best match to the experimental data. The models also perform well in predicting the excess entropy, enthalpy, and free energy of liquid water. The TIP4P-2005 and SWM4-NDP models are more accurate than the TIP3P-Ewald and TIP5P-Ewald models in this respect. However, the relative angular distribution functions of the four water models reveal notable differences. The TIP5P-Ewald model demonstrates an increased preference for water molecules to act both as tetrahedral hydrogen bond donors and acceptors, whereas the SWM4-NDP model demonstrates an increased preference for water molecules to act as planar hydrogen bond acceptors. These differences are not uncovered by analysis of the RDFs or the commonly employed tetrahedral order parameter. However, they are expected to be very important when considering water molecules around solutes and are thus a key consideration in modelling solvent entropy.Acknowledgements go to Mike Payne for careful reading of the paper; Peter Freddolino, Chris Baker, David Payne, and Bracken King for helpful discussions; Stuart Rankin for technical help; and the NVIDIA CUDA Centre of Excellence at the Cambridge HPCS for use of the CUDA-accelerated GPUs. Thanks also go to the reviewers for their helpful comments. All calculations were performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/) provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and were funded by the Engineering and Physical Sciences Research Consul (United Kingdom) (EPSRC) under Grant No. EP/F032773/1. Thanks for financial support go to the MRC, Wellcome Trust, and EPSRC.This is the author accepted manuscript. The final version is available from AIP Publishing via http://dx.doi.org/10.1063/1.368344
A discrete model of water with two distinct glassy phases
We investigate a minimal model for non-crystalline water, defined on a Husimi
lattice. The peculiar random-regular nature of the lattice is meant to account
for the formation of a random 4-coordinated hydrogen-bond network. The model
turns out to be consistent with most thermodynamic anomalies observed in liquid
and supercooled-liquid water. Furthermore, the model exhibits two glassy phases
with different densities, which can coexist at a first-order transition. The
onset of a complex free-energy landscape, characterized by an exponentially
large number of metastable minima, is pointed out by the cavity method, at the
level of 1-step replica symmetry breaking.Comment: expanded version: 6 pages, 7 figure
Great SCO2T! Rapid tool for carbon sequestration science, engineering, and economics
CO2 capture and storage (CCS) technology is likely to be widely deployed in
coming decades in response to major climate and economics drivers: CCS is part
of every clean energy pathway that limits global warming to 2C or less and
receives significant CO2 tax credits in the United States. These drivers are
likely to stimulate capture, transport, and storage of hundreds of millions or
billions of tonnes of CO2 annually. A key part of the CCS puzzle will be
identifying and characterizing suitable storage sites for vast amounts of CO2.
We introduce a new software tool called SCO2T (Sequestration of CO2 Tool,
pronounced "Scott") to rapidly characterizing saline storage reservoirs. The
tool is designed to rapidly screen hundreds of thousands of reservoirs, perform
sensitivity and uncertainty analyses, and link sequestration engineering
(injection rates, reservoir capacities, plume dimensions) to sequestration
economics (costs constructed from around 70 separate economic inputs). We
describe the novel science developments supporting SCO2T including a new
approach to estimating CO2 injection rates and CO2 plume dimensions as well as
key advances linking sequestration engineering with economics. Next, we perform
a sensitivity and uncertainty analysis of geology combinations (including
formation depth, thickness, permeability, porosity, and temperature) to
understand the impact on carbon sequestration. Through the sensitivity analysis
we show that increasing depth and permeability both can lead to increased CO2
injection rates, increased storage potential, and reduced costs, while
increasing porosity reduces costs without impacting the injection rate (CO2 is
injected at a constant pressure in all cases) by increasing the reservoir
capacity.Comment: CO2 capture and storage; carbon sequestration; reduced-order
modeling; climate change; economic
Predicting vapor liquid equilibria using density functional theory: a case study of argon
Predicting vapor liquid equilibria (VLE) of molecules governed by weak van der Waals (vdW) interactions using the first principles approach is a significant challenge. Due to the poor scaling of the post Hartree-Fock wave function theory with system size/basis functions, the Kohn-Sham density functional theory (DFT) is preferred for systems with a large number of molecules. However, traditional DFT cannot adequately account for medium to long range correlations which are necessary for modeling vdW interactions. Recent developments in DFT such as dispersion corrected models and nonlocal van der Waals functionals have attempted to address this weakness with a varying degree of success. In this work, we predict the VLE of argon and assess the performance of several density functionals and the second order Møller-Plesset perturbation theory (MP2) by determining critical and structural properties via first principles Monte Carlo simulations. PBE-D3, BLYP-D3, and rVV10 functionals were used to compute vapor liquid coexistence curves, while PBE0-D3, M06-2X-D3, and MP2 were used for computing liquid density at a single state point. The performance of the PBE-D3 functional for VLE is superior to other functionals (BLYP-D3 and rVV10). At T = 85 K and P = 1 bar, MP2 performs well for the density and structural features of the first solvation shell in the liquid phase
Havening
Havening explores, through the creative nonfiction genre, the life and work of horticulturist-philosopher Liberty Hyde Bailey, Jr. (1858-1854), the life experiences of the present author, and the small hometown of South Haven that they both share. It presents the tension of living a life that strives to balance academicism with creativity and energy, and pushes the question of Bailey\u27s relevance as a voice for our time. This monograph is primarily an artwork, not a scholarly paper
- …
