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Abstract 

Water is one of simplest molecules in existence, but also one of the most important in biological 

and engineered systems. However, understanding the structure and dynamics of liquid water 

remains a major scientific challenge. Molecular dynamics simulations of liquid water were 

performed using the water models TIP3P-Ewald, TIP4P-2005, TIP5P-Ewald and SWM4-NDP to 

calculate the radial distribution functions, the relative angular distributions and the excess 

enthalpies, entropies and free energies. In addition, lower-order approximations to the entropy 

were considered, identifying the fourth-order approximation as an excellent estimate of the full 

entropy. The second-order and third-order approximations are approximately 20% larger and 

smaller than the true entropy respectively. All four models perform very well in predicting the 

radial distribution functions, with the TIP5P-Ewald model providing the best match to the 

experimental data. The models also perform well in predicting the excess entropy, enthalpy and 

free energy of liquid water. The TIP4P-2005 and SWM4-NDP models are more accurate than the 

TIP3P-Ewald and TIP5P-Ewald models in this respect. However, the relative angular 

distribution functions of the four water models reveal notable differences. The TIP5P-Ewald 

model demonstrates an increased preference for water molecules to act both as tetrahedral 

hydrogen bond donors and acceptors, whereas the SWM4-NDP model demonstrates an increased 

preference for water molecules to act as planar hydrogen bond acceptors. These differences are 

not uncovered by analysis of the RDFs or the commonly employed tetrahedral order parameter. 

However, they are expected to be very important when considering water molecules around 

solutes and are thus a key consideration in modelling solvent entropy. 
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Introduction 

At the atomic level, water is one of simplest molecules in existence. However, understanding the 

bulk phases of water remains a major scientific challenge and has inspired debate for many years 

[1-2]. The majority of efforts in modeling liquid water have been directed toward Monte Carlo 

(MC) and molecular dynamics (MD) simulations. These allow time-averaged properties such as 

density or heat capacity to be calculated and compared with experiment [3]. MC and MD 

simulations that employ a forcefield require a set of parameters to describe the structure and 

properties of water molecules and there has been considerable research into the resulting water 

models. The simplest models include three sites in total, two hydrogen atoms and an oxygen 

atom. Such models include the SPC [4], SPC/E [5], TIP3P [6] and TIP3P-Ewald [7] models. A 

polarisable three site AMOEBA water model has also been developed [8]. Four site models such 

as TIP4P [9], TIP4P-Ewald [10] and TIP4P-2005 [11] use an extra atom with zero mass to 

represent a charged site. Five site models have also been developed. The ST2 [12], TIP5P [3] 

and TIP5P-Ewald [13] models use two lone pairs whereas polarisable models such as SWM4-DP 

[14] and SWM4-NDP [15] use one massless charged site and one Drude particle [16]. The six 

site model TIP6P, designed primarily for studying ice, comprises an oxygen atom, two hydrogen 

atoms, two lone pairs and one massless charged site at the centre of mass [17]. These models 

differ in their sophistication and also in the time required for simulation. When attempting to 

model a real system using MC or MD with explicit water molecules, it is thus important to select 

a water model which provides the correct balance of speed and accuracy. However, whilst the 

speed is easy to measure, it is very difficult to gauge the accuracy of the different models 

because experiment has not provided us with a complete picture of the structure and dynamics of 

liquid water.  
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The experimental techniques of X-ray scattering [18-19] and neutron diffraction [20-21] provide 

structural data which can be compared to the predictions of simulation. Application of these 

methods has provided radial distribution functions (RDFs) for the oxygen-oxygen (O-O), 

oxygen-hydrogen (O-H), and hydrogen-hydrogen (H-H) distances in liquid water. Previous work 

has compared some or all of such data with the simulation results for these RDFs for a subset of 

the water models [22-24] . In this work the RDFs given by the four water models TIP3P-Ewald, 

TIP4P-2005, TIP5P-Ewald and SWM4-NDP were compared to these three experimental RDFs. 

These represent three, four and five sites water models in addition to a polarisable model. In 

addition, these four models were explored in terms of the relative orientations of neighboring 

water molecules. This property has been considered previously, but has not been completely 

explored yet it is expected to be very important in understanding liquid water. In particular, 

orientational correlations have an important effect on the entropy of water, both in bulk water 

[25-26] and in biological complexes [27-29]. Recent work has shown that the choice of water 

model affects protein folding [30] and the results of binding free energy calculations [31]. The 

effect of the water model on orientational correlations in liquid water is thus an area of great 

importance and one which has not been fully explored. 

In this study, orientational correlations in the water models TIP3P-Ewald, TIP4P-2005, TIP5P-

Ewald and SWM4-NDP were considered. These models are displayed schematically in Figure 1 

and the parameters for the models are presented in Table I. 
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Materials and Methods 

MD simulations of bulk water were performed using NAMD[32] with the water models TIP3P-

Ewald, TIP4P-2005, TIP5P-Ewald and SWM4-NDP. RDFs, orientational correlations and the 

calculated excess enthalpies, entropies and free energies were then considered. 

 

System Setup 

To create the systems, the SOLVATE program[33] version 1.0 from the Max Planck Institute 

was used to generate a water sphere of radius 50 Å. No ions were included in the simulations. 

This stage of preparation was undertaken to generate a reasonable water density. This sphere was 

then cut to a cube of length 25.0 Å. All hydrogen atoms were then deleted from the systems and 

all the necessary hydrogen atoms, lone pairs and Drude particles were built using the appropriate 

geometry for each water model. The new water molecules were all oriented with the dipole 

vector aligned with the x-axis and the hydrogen atoms lying in the xy-plane. This stage of 

preparation was undertaken to ensure that the geometries of the water molecules were 

standardized. Each water cube contained 526 water molecules. 

 

Equilibration 

All systems were treated using periodic boundary conditions and the electrostatics were modeled 

using the particle mesh Ewald method [34]. The systems were first subjected to MD 

equilibration for 100 ps at 300 K in an NPT ensemble and then MD equilibration for 1 ns at 300 

K in an NVT ensemble. All systems were brought to equilibrium before continuing the 
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simulations by verifying that the systems reached a point where the energy fluctuations were 

stable.  

 

Molecular Dynamics 

Production simulations were performed for 40.0 ns at 300 K. All MD simulations were 

performed using the NAMD program version 2.7b3[35] with the CHARMM27 force field[36-

37]. TIP3P-Ewald, TIP4P-2005 and TIP5P-Ewald were simulated using an MD time step of 2.0 

fs and SWM4-NDP was simulated using an MD time step of 1.0 fs. Electrostatic interactions 

were modelled with a uniform dielectric and a dielectric constant of 1.0 throughout the setup and 

production runs. Van der waals interactions were truncated at 12.0 Å with switching from 8.0 Å. 

Water molecules were modelled as rigid, employing the SETTLE algorithm [38]. All MD 

simulations were performed using NAMD compiled for use with CUDA-accelerated GPUs. 

 

Energy Evaluations 

 

The average interaction energy (Einteraction) was calculated from 1000 snapshots across the first 

8ns of each simulation with one taken every 8 ps. All water molecules in the periodic box were 

considered, including their interactions with neighboring boxes. To generate the excess enthalpy 

from the calculated interaction energy, three adjustments are required. The first is a correction to 

include the potential energy of the Drude particle (Edrude) for the SWM4-NDP model.  
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𝐸𝐷𝑟𝑢𝑑𝑒 = 1
2⁄ 𝑘𝑑2    (1) 

 

In this equation, k is the Drude force constant of 1000 kcal/mol/Å
2
 and d is the distance of the 

Drude particle from its reference position at the oxygen atom. This contribution is included in the 

potential energy term calculated by NAMD. The second adjustment is to include a polarisation 

correction (Epol), which accounts for the energetic penalty incurred due to the increase in the 

dipole of a water molecule in the liquid phase. This correction is dependent on the calculated 

liquid phase dipole of each model and has the form [5, 10, 39]: 

 

𝐸𝑝𝑜𝑙 =
1

2
(𝜇𝑙𝑖𝑞𝑢𝑖𝑑 − 𝜇𝑔𝑎𝑠)

2
𝛼𝑔𝑎𝑠⁄     (2) 

 

μliquid and μgas are the dipole moments in the liquid and the gas phase and αgas is the mean 

polarisability of a gas phase water molecule. This correction takes the values of 1.132 kcal/mol, 

0.975 kcal/mol, and 0.911 kcal/mol for the models TIP3P-Ewald, TIP4P-2005, and TIP5P-Ewald 

respectively. The SWM4-NDP model does not require a polarisation correction as the 

polarisation penalty Edrude is calculated by equation 1. The third adjustment is to calculate the 

excess enthalpy from the excess energy. This requires a work term to describe the change in 

volume between the liquid and the gas. As PV for the gas is much greater than PV for the liquid, 

this is approximated by Δ(PV)= PVliquid - PVgas= -PVgas= -RT. The total excess enthalpy per mole 

(Hexcess) is therefore: 
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𝐻𝑒𝑥𝑐𝑒𝑠𝑠 = 𝐸𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 𝐸𝑑𝑟𝑢𝑑𝑒 + 𝐸𝑝𝑜𝑙 − 𝑅𝑇  (3) 

 

In previous papers, water models were assessed by considering the interaction energy (Einteraction) 

or the standard heat of vaporisation (-Hexcess), in some cases corrected by Epol. This paper focuses 

on the corrected excess enthalpy (Hexcess) given in Equation 3. 

 

Correlation Functions  

 

The relative positions of each pair of water molecule can be described by the distance between 

the oxygen atoms R, and five angles ω
rel

. The five ω
rel

 angles are denoted θ1, θ2, χ1, χ2, and φ and 

are illustrated in Figure 2. The angles θ1 and θ2 describe the angles between the dipole vectors of 

each water molecule and the intermolecular axis. The angles χ1 and χ2 describe the rotation of 

each water molecule around its dipole vector and are calculated from the angles between the 

intermolecular axis and vectors normal to the plane of the water molecules. The angle φ 

describes the rotation around the intermolecular axis [25]. The correlation functions were 

calculated from the production simulations, using all available water pairs in each case. The 

correlation functions can be used to calculate the excess entropy (Sexcess): 

 

𝑆𝑒𝑥𝑐𝑒𝑠𝑠 = −
1

2
𝑘𝜌 ∫[𝑔(𝑅, 𝜔𝑟𝑒𝑙) ln 𝑔(𝑅, 𝜔𝑟𝑒𝑙) − 𝑔(𝑅, 𝜔𝑟𝑒𝑙) + 1]𝑑𝑅𝑑𝜔𝑟𝑒𝑙 (4) 
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k is Boltzmann’s constant, ρ is the number density of bulk water, and g(R,ω
rel

) is the correlation 

function. The excess entropy can be separated into translational and orientational contributions to 

allow the calculation of the excess translational entropy (Strans) and the excess orientational 

entropy (Sorient): 

 

𝑔(𝑅, 𝜔𝑟𝑒𝑙) = 𝑔(𝑅)𝑔(𝜔𝑟𝑒𝑙|𝑅)    (5) 

𝑆𝑒𝑥𝑐𝑒𝑠𝑠 = 𝑆𝑡𝑟𝑎𝑛𝑠 + 𝑆𝑜𝑟𝑖𝑒𝑛𝑡     (6) 

𝑆𝑡𝑟𝑎𝑛𝑠 = −
1

2
𝑘𝜌 ∫[𝑔(𝑅) ln 𝑔(𝑅) − 𝑔(𝑅) + 1]𝑑𝑅  (7) 

 

The RDFs were calculated as histograms with radial bin sizes of 0.03 Å and were compared to 

the experimentally determined RDFs [20]. The orientational entropy was computed separately 

for each radial shell (Sshell) and then combined to yield the total orientational entropy: 

 

𝑆𝑠ℎ𝑒𝑙𝑙 = −
1

𝛺
∫ 𝑔(𝜔𝑟𝑒𝑙|𝑅) ln 𝑔(𝜔𝑟𝑒𝑙|𝑅) 𝑑𝜔   (8) 

𝑆𝑜𝑟𝑖𝑒𝑛𝑡 = −
1

2
𝑘𝜌 ∫ 𝑔(𝑅)𝑆𝑠ℎ𝑒𝑙𝑙 𝑑𝑅    (9) 
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Ω is the integral over all five ω angles. The orientational pair correlation functions (PCFs) were 

calculated as histograms in shells of radial bin size 0.1 Å and angular bin size 10°. The 

correlation function g(ω
rel

|R) can be integrated, taking advantage of the symmetry of the water 

molecule. The interchangeability of the water molecules allows θ1 to be integrated over the range 

0 to π and θ2 to be integrated from θ1 to π. Furthermore, the symmetry of the water molecules 

allows χ1, χ2 and φ to be integrated over the range 0 to π [25]. To compare relative angular 

distributions in five dimensions, the RMSD between the probability densities was calculated for 

each radial shell from each pair of 40ns production simulation: 

 

𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑅𝑀𝑆𝐷 (𝑅) = √∑
[𝑔𝑎(𝜔𝑟𝑒𝑙|𝑅)𝑑𝑅𝑑𝜔𝑟𝑒𝑙−𝑔𝑏(𝜔𝑟𝑒𝑙|𝑅)𝑑𝑅𝑑𝜔𝑟𝑒𝑙]

2

𝑁𝜔𝑟𝑒𝑙  (10) 

 

In equation 10, g
a
(ω

rel
|R) and g

b
(ω

rel
|R) are the angular correlation functions for water models a 

and b and N is the number of angular bins. The total RMSD between the PCFs quantifies the 

difference between two distributions across all radial bins and all five sets of angular bins and 

was also calculated: 

 

𝑇𝑜𝑡𝑎𝑙 𝑅𝑀𝑆𝐷 = √∑ ∑
[𝑔𝑎(𝑅,𝜔𝑟𝑒𝑙)𝑑𝑅𝑑𝜔𝑟𝑒𝑙−𝑔𝑏(𝑅,𝜔𝑟𝑒𝑙)𝑑𝑅𝑑𝜔𝑟𝑒𝑙]

2

𝑁𝜔𝑟𝑒𝑙𝑅  (11) 
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g
a
(R, ω

rel
) and g

b
(R, ω

rel
) are the correlation functions for water models a and b and N is the total 

number of bins. 

 

Entropy Approximations  

 

In addition to the six dimensional PCF calculations, probability density distributions were also 

calculated for each of the five individual angles θ1, θ2, χ1, χ2, and φ as well as for each pair, 

triple, and quartet of angles. This facilitates the calculation of lower order approximations to the 

entropy and allows the lower order distributions to be viewed. The lower order entropy 

approximations are generated by truncations of the mutual information expansion [40-41]. The 

first, second, third and fourth order approximations to the entropy were computed, in addition to 

the F7 approximation that has been employed previously [25]. 

 

 

𝑆1𝑠𝑡 𝑂𝑟𝑑𝑒𝑟 = ∑ 𝑆(𝛼)𝐶1
5         (12) 

𝑆2𝑛𝑑 𝑂𝑟𝑑𝑒𝑟 = ∑ 𝑆(𝛼, 𝛽)𝐶2
5 − 3 ∑ 𝑆(𝛼)𝐶1

5      (13) 

𝑆3𝑟𝑑 𝑂𝑟𝑑𝑒𝑟 = ∑ 𝑆(𝛼, 𝛽, 𝛾)𝐶3
5 − 2 ∑ 𝑆(𝛼, 𝛽)𝐶2

5 + 3 ∑ 𝑆(𝛼)𝐶1
5    (14) 

𝑆4𝑡ℎ 𝑂𝑟𝑑𝑒𝑟 = ∑ 𝑆(𝛼, 𝛽, 𝛾, 𝛥)𝐶4
5 − ∑ 𝑆(𝛼, 𝛽, 𝛾)𝐶3

5 + ∑ 𝑆(𝛼, 𝛽)𝐶2
5 − ∑ 𝑆(𝛼)𝐶1

5  (15) 

𝑆𝐹7 =S(θ1,θ2)+S(χ1,χ2)+S(θ1,χ2)+S(θ2,χ1)+S(φ)-S(θ1)-S(θ2)-S(χ1)-S(χ2) (16) 
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In these equations, S(α) is the entropy associated with the angle α, S(α, β) is the joint entropy 

associated with the angles α and β, S(α, β, γ) is the joint entropy associated with the angles α, β 

and γ and S(α, β, γ, Δ) is the joint entropy associated with the angles α, β, γ and Δ. The indices 

𝐶𝑚
5  on each sum represent all combinations of the five angles for a given order m. All entropies 

calculated here exclude internal vibrational entropy changes, as the water models are treated as 

rigid. The excess free energies can be calculated using equation 17. 

 

𝐺𝑒𝑥𝑐𝑒𝑠𝑠 = 𝐻𝑒𝑥𝑐𝑒𝑠𝑠 − 𝑇𝑆𝑒𝑥𝑐𝑒𝑠𝑠     (17) 

 

The calculated excess enthalpies, entropies and free energies for the four models can then be 

compared with the experimental data. 

 

Orientational Order Parameters 

 

The tetrahedrality of each water model was assessed by calculating an orientational order 

parameter q [42-43]:   

 

𝑞 = 1 −
3

8
∑ ∑ (𝑐𝑜𝑠𝜓 +

1

3
)24

𝑘=𝑗+1
3
𝑗=1     (18) 
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ψ is the angle formed by the lines joining the oxygen atom of the water molecule to the oxygen 

atoms of its nearest neighbouring water molecules j and k. The four nearest neighbours are 

considered in each case. This order parameter describes the tetrahedral arrangement of oxygen 

atoms around an oxygen atom. The value of q varies between 0 in a random network and 1 in a 

tetrahedral network. In this case the average value of q was calculated from 10000 snapshots, 

considering all waters within 5 Å of the centre of the box. An additional orientational order 

parameter w was also calculated: 

 

𝑤 = 1 −
9

16
∑ ∑ (𝑐𝑜𝑠𝜆 +

1

3
)22

𝑛=1
2
𝑚=1     (18) 

 

𝜆 is the angle formed by the oxygen atom to hydrogen atom bond vector of one water molecule 

(m) and the vector between its oxygen atom and a hydrogen atom of a neighbouring water 

molecule (n). The two nearest neighbouring hydrogen atoms are considered. This order 

parameter describes the tetrahedral arrangement of hydrogen atoms around an oxygen atom. The 

value of w varies between 0 in a random arrangement and 1 in a tetrahedral arrangement. The 

average value of w was calculated from 10000 snapshots, considering all waters within 5 Å of 

the centre of the box.  
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Results 

The ability of each model to accurately recreate the experimentally determined RDFs was 

assessed initially. The results for the O-O RDF are shown in Table II. The TIP5P-Ewald model 

clearly recreates the experimental data most accurately, with the smallest RMSD against the 

experimental data of 0.035. The agreement is very good, as can also be seen in Figure 3 which 

shows the plots for each model against experiment. Each 40ns simulation for a given water 

model was also split into five blocks of 8ns and compared each 8ns block with every other 8ns 

block to compute the RMSD between the two O-O RDFs. The maximum RMSD between any 

pair of 8ns simulations for TIP3P-Ewald, TIP4P-2005, TIP5P-Ewald and SWM4-NDP models 

was 0.0050, 0.0054, 0.0051, and 0.0055 respectively. This is approximately tenfold lower than 

the RMSD between any different pair of water models. Thus, the differences between the models 

appear to be significant. It is interesting to note that the SWM4-NDP model shows a marked 

difference from the experimental data with an RMSD of 0.102, mainly due to the trough after the 

first peak in the RDF. This was noted in the original paper describing this model [15] and 

remains a problem. In addition, the TIP4P-2005 model has the first peak in the O-O and O-H 

RDFs at a higher amplitude than seen in the experimental data. TIP5P also recreates the 

experimental data for the O-H RDF most accurately, as shown in Table II and Figure 4. 

However, in this case the RMSD against the experimental data is 0.073 and the model does not 

fit the experimental data as well as for the O-O RDF. For the H-H RDF, all the models match the 

experimental data reasonably well, as shown in Table II and Figure 5. The TIP4P-2005 model is 

most accurate with an RMSD of 0.020 and in this case the TIP5P model is the least accurate with 

an RMSD of 0.043. All four models show a double peak in the H-H RDF around 4.0 Å that is 

not present in the experimental data. The two peaks seen for all four models at 3.5 Å and 4.5 Å 
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can be attributed to two distinct patterns of ordering in the second solvation shell that does not 

reflect the dynamics of liquid water observed experimentally. In summary, the four models all do 

reasonably well at recreating the three RDFs of liquid water. The TIP5P-Ewald model is the 

most accurate, whilst the SWM4-NDP model shows a discrepancy in the O-O RDF. As 

expected, the more complex water models require greater computational expense. As seen in 

Table II, the TIP4P-2005, TIP5P-Ewald and SWM4-NDP models run 1.7, 2.6, and 5.2 times 

slower than the TIP3P-Ewald model. 

From a consideration of the three RDFs, the distributions of the relative angles for the four 

models was then considered. Whilst there is no experimental data for comparison in this case, the 

models can be compared with one another and the results can be analysed. The correlation 

functions for the angles φ, χ1, and θ1 within the range of 2.7-2.8 Å for the O-O distance in the 

four water models are shown in Figures 6, 7 and 8 respectively. The distribution of φ angles is 

flat for all four models, as noted previously for the TIP4P water model [25] and for other three 

and four site models [44]. From the simulations in this work, the five site TIP5P-Ewald model 

and the polarisable SWM4-NDP model are also unstructured along this angle. The χ1 angle 

shows a similar distribution to that reported previously for the TIP4P water model [25] in Figure 

7, with a peak at around 90°. However, the TIP5P-Ewald model shows a reduced preference for 

the 90° angle and an increased preference for the 0° (180°) angle. This increased preference for a 

0° angle may reflect an increase in the tendency of the water to act as a hydrogen bond acceptor 

in a more structured fashion due to the directionality of the lone pair that is not present in the 

other models. A water model with perfect tetrahedral symmetry and two pairs of massless charge 

sites with opposite charge should show an equal preference for the 0° and 90° angles, as the 

hydrogen bond donor and acceptor geometries will be the same. The TIP3P model shows the 
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least structure and the SWM4-NDP model shows the greatest preference for the 90° angle with 

probability densities above 3.0. The most striking difference between the angular correlation 

functions is in the θ1 distribution, shown in Figure 8. All four models show a peak at 

approximately 50° corresponding to the tetrahedral hydrogen bond donor configuration, but the 

TIP3P-Ewald, TIP4P-2005 and SWM4-NDP models show the second peak corresponding to the 

hydrogen bond acceptor configuration at 180°. The TIP5P-Ewald model shows this peak at 

approximately 130°, which reflects tetrahedral hydrogen bond acceptor geometry. Thus, the two 

peaks in the θ1 distribution for TIP5P are consistent with a tetrahedral geometry and the preferred 

orientation for TIP5P is in good agreement with the calculated global minimum energy 

configuration for water dimers, which lies at θ1≈55° and θ2≈125° [25, 45]. Conversely, the 

SWM4-NDP shows a much greater preference for the 180° angle than the other models and a 

larger probability density at the 50° angle. It is thus acting as a hydrogen bond donor with a 

strong preference for tetrahedral geometry but as hydrogen bond acceptor with a greater 

preference for planar geometry rather than tetrahedral geometry. These differences are illustrated 

more compellingly by considering the distributions of pairs of angles. The distribution for θ1 and 

θ2 is shown in Figure 9. The TIP3P-Ewald and TIP4P-2005 models have similar distributions, 

with peaks of probability density 8.9 and 7.5. The SWM4-NDP model has a much higher peak 

with a maximum at 13.6. The TIP5P-Ewald model shows two peaks at g(θ1,θ2) ≈ 10 

corresponding to hydrogen bond donation and acceptance. The distribution for χ1 and χ2 is shown 

in Figure 10 and again the TIP5P-Ewald model differs from the other, showing no peak around 

χ1=90° and χ2=90°. The SWM4-NDP model shows the highest peak at this point, with a local 

maximum in the probability density of g(χ1,χ2) ≈ 2.2. The greater preference for planar geometry 

in the SWM4-NDP model is likely due to increased electrostatic interactions when the accepting 
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water polarises parallel to the donating O-H bond and places its hydrogen atoms at their 

maximum distance from the donating water. This corresponds to a co-planar arrangement of the 

donating O-H bond with the accepting water molecule.  

In addition to the relative angular distributions, the orientational order parameters q and w were 

calculated for each water model. The value of q quantifies the overall tetrahedrality of oxygen 

atoms around each water molecule and the value of w quantifies the overall tetrahedrality of 

hydrogen atoms around each water molecule. The values of q for the TIP3P-Ewald, TIP4P-2005, 

TIP5P-Ewald and SWM4-NDP models are 0.59, 0.67, 0.64, and 0.63 respectively. These results 

are in line with previous calculations [43]. Interestingly, TIP4P-2005 is calculated to be the most 

tetrahedral water model using the orientational order parameter q, albeit only slightly. This is at 

odds with the results from considering the relative orientational angles. The values of w for the 

TIP3P-Ewald, TIP4P-2005, TIP5P-Ewald and SWM4-NDP models are 0.68, 0.74, 0.78 and 0.69 

respectively. Thus TIP5P-Ewald is calculated to be the most tetrahedral water model using the 

orientational order parameter w, in line with results from considering the relative orientational 

angles. There is an important distinction between the tetrahedral geometry of the water network, 

quantified by the order parameter q, and the tetrahedral geometry of hydrogen bonding, 

quantified by the order parameter w.  It is clear from the angular correlation functions and the 

order parameter w that the TIP5P model prefers tetrahedral hydrogen bonding geometries. 

However, whilst this is not surprising, it may not accurately reflect liquid water. Importantly, 

there is currently no experimental data that is able to assess this issue definitively and it must, for 

the present, remain as an observation on the models. 

After considering the angular correlation functions, the enthalpies, entropies and free energies 

were calculated for the four models. The experimental values are derived from the experimental 
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data for Hexcess and Sexcess [46-47]. The results can be seen in Table II. All four models match the 

experimental excess enthalpy reasonably well, with the TIP3P-Ewald and TIP5P-Ewald models 

performing slightly less well, underestimating by 1.245 and 1.165 kcal/mol respectively. 

However, the TIP3P-Ewald and TIP5P-Ewald models provide the best match to the experimental 

excess entropy and both are within 1 cal/mol/K of the experimentally determined value of -

14.054 cal/mol/K, as shown in Table II. The TIP4P-2005 model provides the best estimate of the 

excess free energy, within 1% of the experimental value, although it achieves this by 

complementary inaccuracies in the predictions for the excess enthalpy and entropy. The TIP3P-

Ewald and TIP5P-Ewald models are the least accurate, 20% and 28% higher than the 

experimental value. Considering the sum squared differences between the predicted values of 

Hexcess and TSexcess and the values from experiment, the SWM4-NDP model is the most accurate, 

though the TIP4P-2005 model is nearly as good.  

The importance of each radial shell in contributing to the orientational entropy can be seen in 

Figure 11. For all four models, over 70% of the orientational entropy is derived from radial shells 

up to 3.4 Å and 95% is derived from radial shells up to 5.4 Å. This finding is in good agreement 

with previous work on the SPC water model [24]. In summary, all four models make reasonable 

predictions for the excess quantities, with the TIP5P-Ewald performing slightly better and the 

TIP4P-2005 model performing slightly worse. In addition to calculating the full 6-dimensional 

entropy, it is interesting to consider the lower order approximations to the entropy, as these 

require less data and thus shorter simulations to converge. Table III compares the lower order 

approximations with the true entropy. The first order approximations grossly underestimate the 

true entropy in all cases, as expected, but the second order approximation is reasonable and is as 
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close as the F7 approximation to the true entropy. The ability of the fourth order approximation 

to match the full entropy is most likely due to the flatness of the φ angular distribution.  

Whilst analysis of the single and pair relative angular distributions and predictions of the excess 

enthalpy are revealing, an additional metric was also considered that compares the four models 

and quantifies the difference between their relative angular distributions. Table IV shows the 

RMSDs between all pairs of the full five dimensional PCFs across all radial shells for the four 

models, calculated using equation 11. This RMSD quantifies the similarity of the two five-

dimensional relative angular distributions across all radial shells, with 0.0 representing identical 

distributions. Figure 12 shows the RMSD between the five-dimensional relative angular 

distributions for all pairs of models in each radial shell from 2.5 to 8.0 Å. The RMSD was 

calculated for each radial shell using equation 10. Only shells greater than 2.5 Ǻ were 

considered, as closer shells do not contain sufficient data for accurate comparison. There are 

relatively few samples for the lowly populated bins between 0 and 2.5 Å and this provides a 

correspondingly high uncertainty in the predicted relative angular distribution at these distances. 

However, this is of little consequence in relation to the entropy predictions, as shells below 2.5 Å 

make only a very small contribution to the entropy due to their very small radial probability 

densities.  

As well as comparing the relative angular distributions in each shell, the total RMSD between 

pairs of complete six-dimensional distributions was also calculated. For one water model, 

comparing the first 16ns of the production simulation with the second 16ns allows the 

convergence of the statistical average of the relative angular distributions to be assessed. This 

can be seen as the blue, red, green and orange lines for TIP3P-Ewald TIP4P-2005 TIP5P-Ewald, 

and SWM4-NDP in Figure 12. When considering only one water model, the RMSD is below 
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0.00045 in all models for all shells. However, when comparing the entire 40ns of the production 

simulations for different water models, the RMSD is as high as 0.0049, with particular 

differences below 3.2 Å, in the first solvation shell. This is more than a tenfold increase 

compared with considering one water model with itself. It is again notable that the TIP5P-Ewald 

model is clearly different from the other three models, which are more similar to one another. 

However, all four models have different relative angular distributions. This difference is not 

entirely clear from the one and two dimensional distributions plotted in Figures 6, 7, 8, 9, and 10. 

At distances above 6.5 Å, the RMSD between the models converges to 0.00045, representing the 

uncertainty inherent in the binned sampling. The differences between the models become even 

more pronounced when multiplied by the radial probability density at the first peak in the RDF 

between 2.6 Å and 3.1 Å, as for the calculation of the shell entropy in equation 9.  
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Discussion 

Computational modeling has the potential to offer significant insights into the thermodynamics 

of liquid water in the bulk and around biological or non-biological solutes. However, the results 

from this paper suggest that these insights will differ depending on the water model used and this 

fact may be masked by comparisons with the experimental RDFs. Further experimental data is 

needed to effectively validate these water models and this in turn is vital in improving the 

performance of computer simulations. A key result from this paper is that the five site water 

model TIP5P-Ewald shows notable differences from the other three models in the relative 

angular distribution, with a marked preference to act as a tetrahedral hydrogen bond donor and 

acceptor. Importantly, this fact is masked by the order parameter q, which quantifies the 

tetrahedral geometry of the water network. However, it is clear from the order parameter w, 

which quantifies the tetrahedral geometry of hydrogen bonding, and from the relative angular 

distributions, particularly the θ1/θ2 distribution in Figure 9. The TIP3P-Ewald, TIP4P-2005, and 

SWM4-NDP models do not show a preference to act as a tetrahedral hydrogen bond acceptor 

and the SWM4-NDP model in particular shows a greater preference to act as a hydrogen bond 

acceptor with the OH bond from the donating water coplanar with the accepting water. It is 

important to note that a preference for tetrahedral hydrogen bonding geometry is not the same as 

a "tetrahedral structure" for water and the proclivity of these models to form chains or rings has 

not been assessed here [48]. Indeed, recent experimental results suggest that water may be 

comprised of a mixture of tetrahedral-like and distorted structures [49-50]. These distorted 

structures have been predicted to include a trigonal arrangement where oxygen acts as a single 

hydrogen bond acceptor and a trigonal bipyramidal arrangement where oxygen acts as a triple 

hydrogen bond acceptor [51]. Controversy still exists as to whether these should be considered as 
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stable states or as transition states between tetrahedral arrangements. Interestingly, the results of 

this study suggest that trigonal and trigonal bipyramidal arrangements would be more prevalent 

for some models than others, as the probability densities at θ1=180 differ notably, as seen in 

Figure 8. This effect is even most pronounced for the SWM4-NDP model where g(θ1=180) ≈ 2 

and least pronounced for the TIP5P-Ewald model where g(θ1=180) ≈ 0.5. For the TIP3P-Ewald 

and TIP4P-2005 models, g(θ1=180) ≈ 1. 

The existence of experimental data on water structure is very useful to evaluate different water 

models. However, whilst neutron diffraction data is able to validate the predictions of the O-O, 

O-H, and H-H RDFs for these models, where the TIP5P-Ewald model performs best at recreating 

the experimental data, there is no experimental data to validate the exact predictions for the 

relative angular distributions. To comprehensively assess these water models would require new 

experimental techniques with high accuracy and the ability to consider a short timescale [52]. 

Failing this, it might be instructive to perform quantum mechanical simulations of liquid water at 

high levels of accuracy [19, 53-54]. This would allow the different water models to be compared 

with a more sophisticated model that includes orbital overlap, anisotropic polarisability and 

dispersion energies. Whilst the water models considered here represent four different classes, in 

the context of a forcefield it would be interesting to compare polarisable five site models [55], 

models with anisotropic polarisability [56] and models with two Drude particles per oxygen. 

The similarities and differences between the four models is clear from analysis of the one- and 

two-dimensional angular distributions in Figures 6, 7, 8, 9, and 10. Whilst it is not possible to 

view the complete five-dimensional relative angular distributions, Figure 12 highlights that the 

four models have significantly different orientational correlations below 3.5 Å. This is an 

important issue, as the relative angular distribution in bulk water has been employed as a 
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substitute for the relative angular distribution around a solute [28], and it is clear from Figure 11 

that the region below 3.5 Å is the most important in determining the entropy [24]. There has 

been significant work on the thermodynamics of water molecules around solutes such as model 

hydrophobic enclosures [57], buried pockets [58] and the surface of proteins [59]. Furthermore, 

whilst the φ angle is predicted to be unstructured in liquid water, it may be structured in the 

location of a solute and this should be considered when using data from a simulation of bulk 

water in calculations of water structure around a solute. This will also affect the accuracy of the 

lower-order approximations to the entropy. Whilst the fourth-order approximation to the entropy 

performs very well here, this may not be the case around a solute. 

All four models perform reasonably well in predicting the experimental excess entropy of water. 

The TIP3P-Ewald and TIP5P-Ewald models are more accurate and are both within 5.0% of the 

experimental excess entropy. The TIP4P-2005 and SWM4-NDP models are within 

approximately 10% of the experimental excess entropy. Given the very large amounts of 

sampling required to calculate the full entropy, the lower-order approximations provide a 

reasonable estimate. Whilst the fourth order approximation is within 5% for all four models, the 

second order approximation is only 20% larger than the full entropy and requires significantly 

less data to calculate. The predictions are also good for the excess enthalpy. The differences from 

the experimental excess enthalpy for the TIP3P-Ewald, TIP4P-2005, TIP5P-Ewald and SWM4-

NDP models are 13.4%, 3.9%, 12.5% and 0.9% respectively. The prediction of the experimental 

excess free energy is particularly good for the TIP4P-2005 model and is within 0.3%. However, 

this arises from complementary inaccuracies in the predictions for the excess enthalpy and 

entropy. Overall the TIP4P-2005 and SWM4-NDP models perform well, with the TIP3P-Ewald 

and TIP5P-Ewald models being less accurate. The reason for this appears to be that these models 
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were developed without considering the polarization correction from equation 2. If this term is 

ignored then both models perform significantly better. The choice of water model affects protein 

folding [30] and binding free energy calculations [31], making the accuracy of the 

thermodynamics for these models very important. 

In summary, the ability of the TIP3P-Ewald, TIP4P-2005, TIP5P-Ewald, and SWM4-NDP water 

models to reproduce the O-O, O-H and H-H RDFs masks differences in the relative angular 

distributions of the four models. In particular, the TIP5P-Ewald water molecule acts as a 

tetrahedral hydrogen bond donor and acceptor in the liquid whereas the SWM4-NDP water 

molecule acts as a tetrahedral hydrogen bond donor and a co-planar acceptor. Thus, any insights 

into the hydrogen-bond structure in water taken from a simulation are likely to be dependent on 

the water model used and may not be true insights. The accuracy of these models should be 

explored in future work, either experimentally or using quantum mechanical methods. Designing 

an experiment to probe the relative angular distribution of liquid water would be an invaluable 

contribution to the field. This will lead to a greater understanding of water and determine 

whether the added computational expense of more complex water models is necessary. The 

impact of the water model on correlations around solute molecules must also be explored, to 

effectively model solvent entropy.  
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Figure Legends 

 

Figure 1 – The four water models used in this study.  

The TIP3P-Ewald, TIP4P-2005, TIP5P-Ewald and SWM4-NDP water models. Oxygen atoms 

are displayed as red spheres, hydrogen atoms are displayed as light grey spheres, lone pairs are 

displayed as cyan spheres, massless charge sites are displayed as dark blue spheres and Drude 

particles are displayed as yellow spheres 

 

Figure 2 – The relative orientations of two water molecules. 

The five angles describing the relative orientation of two water molecules. Oxygen atoms are 

displayed as red spheres and hydrogen atoms are displayed as light grey spheres. The θ angles 

describe the angles between the dipole vectors of each water molecule and the intermolecular 

axis, the χ angles describe the angles between the intermolecular axis and vectors normal to the 

plane of the water molecules and the φ angle describes the rotation around the intermolecular 

axis. 

 

Figure 3 – The O-O RDFs for the four water models. 

The oxygen-oxygen radial distribution functions for TIP3P-Ewald (blue), TIP4P-2005 (red), 

TIP5P-Ewald (green) and SWM4-NDP (orange) compared to the experimental data from neutron 

diffraction (black). 
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Figure 4 – The O-H RDFs for the four water models. 

The oxygen-hydrogen radial distribution functions for TIP3P-Ewald (blue), TIP4P-2005 (red), 

TIP5P-Ewald (green) and SWM4-NDP (orange) compared to the experimental data from neutron 

diffraction (black). 

 

Figure 5 – The H-H RDFs for the four water models. 

The hydrogen-hydrogen radial distribution functions for TIP3P-Ewald (blue), TIP4P-2005 (red), 

TIP5P-Ewald (green) and SWM4-NDP (orange) compared to the experimental data from neutron 

diffraction (black). 

 

Figure 6 – The φ Angular Distribution Functions for the Four Models  

The φ angular distribution functions from TIP3P-Ewald (blue), TIP4P-2005 (red), TIP5P-Ewald 

(green) and SWM4-NDP (orange) between 2.7 Å and 2.8 Å. 

 

Figure 7 – The χ1 Angular Distribution Functions for the Four Models  

The χ1 angular distribution functions from TIP3P-Ewald (blue), TIP4P-2005 (red), TIP5P-Ewald 

(green) and SWM4-NDP (orange) between 2.7 Å and 2.8 Å. 

 

Figure 8 – The θ1 Angular Distribution Functions for the Four Models  
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The θ1 angular distribution functions from TIP3P-Ewald (blue), TIP4P-2005 (red), TIP5P-Ewald 

(green) and SWM4-NDP (orange) between 2.7 Å and 2.8 Å. 

 

Figure 9 - Surface plots of the θ1/θ2 Angular Distribution Functions for the Four Models   

The θ1/θ2 pair distribution functions for the four models between 2.7 Å and 2.8 Å. The probability 

density g(r) is represented by the level of the surface and coloured in bands of height of 1.0. 

                                     

Figure 10 – Surface plots of the χ1/χ2 Angular Distribution Functions for the Four Models 

The χ1/χ2 pair distribution functions for the four models between 2.7 Å and 2.8 Å. The probability 

density g(r) is represented by the level of the surface and coloured in bands of height of 1.0. 

  

                                   

Figure 11 – The orientational entropy of the water models for each radial shell from 2.5 to 

8.0 Å. The two particle entropy from the models TIP3P-Ewald (blue), TIP4P-2005 (red), TIP5P-

Ewald (green) and SWM4-NDP (orange) in each shell between 2.5 and 8.0 Å. 

 

Figure 12 – The RMSD of the orientational correlation function for all pairs of water 

models. The angular RMSD between the orientational PCF for each radial shell from pairs of the 

water models (a) TIP3P-Ewald, (b) TIP4P-2005, (c) TIP5P-Ewald and (d) SWM4-NDP The 

RMSD was calculated between 2.5 and 8.0 Å using equation 10. The RMSDs in each shell for 

the four models are coloured blue, red, green, and orange respectively. 
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Tables 

 

Table I – Parameters for the water models used in this study. 

 

Model TIP3P-Ewald TIP4P-2005 TIP5P-Ewald SWM4-NDP 

qO (e) -0.83 0.0 0.0 0.0 

qH (e) +0.415 +0.5564 +0.241 +0.55733 

qLP (e) - -1.1128 -0.241 -1.11466 

dO-H (Å) 0.9572 0.9572 0.9572 0.9572 

dO-LP (Å) -  0.7 - 

Θ H-O-H (°) 104.52 104.52 104.52 104.52 

Θ LP-O-LP (°) - - 109.47 - 

ε (kcal/mol) -0.102 -0.185205 -0.178 -0.21094325 

Rmin (Å) 1.7892 1.7729 1.737914 1.78692899 
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Table II- Simulation results for the water models used in this study. 

 

Model 
TIP3P-

Ewald 

TIP4P-

2005 

TIP5P-

Ewald 

SWM4-

NDP 
Experimental 

Runtime (ns/day) 11.8 6.9 4.5 2.3 NA 

1st O-O Peak (Å) 2.72 2.78 2.75 2.78 2.75 

O-O g(r) Max 2.95 3.28 2.85 3.04 2.75 

1st O-O Trough (Å) 3.32 3.38 3.47 3.35 3.38 

O-O g(r) Min 0.79 0.75 0.82 0.91 0.78 

RMSD in O-O g(r) 0.10 0.09 0.03 0.10 NA 

RMSD in O-H g(r) 0.08 0.10 0.07 0.10 NA 

RMSD in H-H g(r) 0.03 0.02 0.04 0.02 NA 

Strans (cal/mol/K) -2.91 -3.48 -3.13 -3.29 -3.01 (b) 

Sorient (cal/mol/K) -10.49 -12.07 -11.65 -12.44 -11.04 (c) 

Sexcess (cal/mol/K) -13.40 -15.54 -14.78 -15.73 -14.05 (a) 

Hexcess (kcal/mol) -9.27 -10.94 -9.35 -10.43 -10.51 (a) 

Gexcess (kcal/mol) -5.28 -6.31 -4.95 -5.74 -6.33 (a) 
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The RMSD in g(r) is the root of the sum of the squares of the difference between the 

experimental and the predicted g(r) at each radial distance. It represents the overall difference 

from experiment between the RDF for each model. For the O-H RDF, only the region above 1.29 

Å was considered, as the RDFs below this point depend on molecular vibrations and these are all 

static models. For the same reason, only the region above 1.83 Å was considered for the H-H 

RDF. (a) The experimental data was taken from Wagner [46] and . (b) The experimental Strans 

was calculated from the experimental RDF from Soper [20]. (c) The experimental Sorient was 

calculated from the experimental Stotal and Strans.  
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Table III - The Orientational Entropies for the Four Models and the Lower Order 

Approximations. 

 

ΔSexcess 

(cal/mol/K) 

TIP3P-

Ewald 

TIP4P- 

2005 

TIP5P-

Ewald 

SWM4- 

NDP 

Mean Pairs 

Per Bin 

Full -10.491 -12.065 -11.648 -12.441 340 

4th Order 

Approximation 
-10.214 -11.546 -11.254 -12.054 6135 

3rd Order 

Approximation 
-9.088 -9.776 -9.503 -10.564 110430 

2nd Order 

Approximation 
-12.568 -14.600 -14.252 -14.418 1987805 

F7 

Approximation 
-9.239 -9.850 -10.130 -10.049 1987805 

1st Order 

Approximation 
-3.245 -3.274 -3.106 -3.883 35780525 
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Table IV - The RMSD Between the Orientational Pair Correlation Functions Across All 

The Radial Shells 

RMSD TIP3P-Ewald TIP4P-2005 TIP5P-Ewald SWM4-NDP 

TIP3P-Ewald 0.000249    

TIP4P-2005 0.000685 0.000249   

TIP5P-Ewald 0.000897 0.000887 0.000245  

SWM4-NDP 0.000540 0.000512 0.000987 0.000247 

  



35 
 

 

References 

 

[1] J. D. Smith et al., Science 306, 851 (2004). 

[2] P. Wernet et al., Science 304, 995 (2004). 

[3] M. W. Mahoney, and W. L. Jorgensen, The Journal of Chemical Physics 112, 8910 (2000). 

[4] H. Berendsen et al., Intermolecular forces 11, 331 (1981). 

[5] H. Berendsen, J. Grigera, and T. Straatsma, J Phys Chem-Us 91, 6269 (1987). 

[6] W. L. Jorgensen, J. Am. Chem. Soc. 103, 335 (1981). 

[7] D. J. Price, and C. L. Brooks III, The Journal of Chemical Physics 121, 10096 (2004). 

[8] P. Ren, and J. W. Ponder, The Journal of Physical Chemistry B 107, 5933 (2003). 

[9] W. L. Jorgensen, The Journal of Chemical Physics 77, 4156 (1982). 

[10] H. W. Horn et al., J. Chem. Phys. 120, 9665 (2004). 

[11] J. L. F. Abascal, and C. Vega, J. Chem. Phys. 123, 234505 (2005). 

[12] A. Rahman, and F. Stillinger, Journal of the American Chemical Society 95, 7943 (1973). 

[13] S. W. Rick, J. Chem. Phys. 120, 6085 (2004). 

[14] G. Lamoureux, A. D. MacKerell Jr, and B. Roux, The Journal of Chemical Physics 119, 5185 (2003). 

[15] G. Lamoureux et al., Chem. Phys. Lett. 418, 245 (2006). 

[16] G. Lamoureux, and B. Roux, The Journal of chemical physics 119, 3025 (2003). 

[17] H. Nada, J. Van der Eerden, and Y. Furukawa, Journal of crystal growth 266, 297 (2004). 

[18] J. M. Sorenson et al., The Journal of Chemical Physics 113, 9149 (2000). 

[19] G. Hura et al., Phys. Chem. Chem. Phys. 5, 1981 (2003). 

[20] A. Soper, Chemical Physics 258, 121 (2000). 

[21] A. Soper, and M. Phillips, Chemical Physics 107, 47 (1986). 



36 
 

[22] W. L. Jorgensen et al., J. Chem. Phys. 79, 926 (1983). 

[23] C. Vega et al., Phys. Chem. Chem. Phys. 7, 1450 (2005). 

[24] J. Zielkiewicz, J. Chem. Phys. 123, 104501 (2005). 

[25] T. Lazaridis, and M. Karplus, J. Chem. Phys. 105, 4294 (1996). 

[26] T. Lazaridis, J. Phys. Chem. B 102, 3531 (1998). 

[27] Z. Li, and T. Lazaridis, Abstr. Pap. Am. Chem. Soc. 226, U442 (2003). 

[28] Z. Li, and T. Lazaridis, J. Phys. Chem. B 110, 1464 (2006). 

[29] D. J. Huggins, M. Marsh, and M. C. Payne, J. Chem. Theory Comput. 7, 3514 (2011). 
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