146 research outputs found

    Characterizing the Shiga Toxin-Receptor Interaction

    Get PDF

    Journeys through the Golgi—taking stock in a new era

    Get PDF
    The Golgi apparatus is essential for protein sorting and transport. Many researchers have long been fascinated with the form and function of this organelle. Yet, despite decades of scrutiny, the mechanisms by which proteins are transported across the Golgi remain controversial. At a recent meeting, many prominent Golgi researchers assembled to critically evaluate the core issues in the field. This report presents the outcome of their discussions and highlights the key open questions that will help guide the field into a new era

    Cisternal Organization of the Endoplasmic Reticulum during Mitosis

    Get PDF
    The endoplasmic reticulum (ER) of animal cells is a single, dynamic, and continuous membrane network of interconnected cisternae and tubules spread out throughout the cytosol in direct contact with the nuclear envelope. During mitosis, the nuclear envelope undergoes a major rearrangement, as it rapidly partitions its membrane-bound contents into the ER. It is therefore of great interest to determine whether any major transformation in the architecture of the ER also occurs during cell division. We present structural evidence, from rapid, live-cell, three-dimensional imaging with confirmation from high-resolution electron microscopy tomography of samples preserved by high-pressure freezing and freeze substitution, unambiguously showing that from prometaphase to telophase of mammalian cells, most of the ER is organized as extended cisternae, with a very small fraction remaining organized as tubules. In contrast, during interphase, the ER displays the familiar reticular network of convolved cisternae linked to tubules

    Organelle tethering by a homotypic PDZ interaction underlies formation of the Golgi membrane network

    Get PDF
    Formation of the ribbon-like membrane network of the Golgi apparatus depends on GM130 and GRASP65, but the mechanism is unknown. We developed an in vivo organelle tethering assaying in which GRASP65 was targeted to the mitochondrial outer membrane either directly or via binding to GM130. Mitochondria bearing GRASP65 became tethered to one another, and this depended on a GRASP65 PDZ domain that was also required for GRASP65 self-interaction. Point mutation within the predicted binding groove of the GRASP65 PDZ domain blocked both tethering and, in a gene replacement assay, Golgi ribbon formation. Tethering also required proximate membrane anchoring of the PDZ domain, suggesting a mechanism that orientates the PDZ binding groove to favor interactions in trans. Thus, a homotypic PDZ interaction mediates organelle tethering in living cells

    Positioning the Golgi apparatus.

    No full text
    Ríos et al. (2004) report in this issue that the Golgi protein GMAP-210 is sufficient to confer pericentrosomal positioning and recruits gamma-tubulin and associated microtubule-nucleating ring complex proteins to Golgi membranes. The results raise the possibility that short microtubules emanate from the Golgi to mediate its organization and positioning.</p

    Binding of the vesicle docking protein p115 to the GTPase Rab1b regulates membrane recruitment of the COPI vesicle coat

    No full text
    Membrane recruitment of the COPI vesicle coat is fundamental to its function and contributes to compartment identity in the early secretory pathway. COPI recruitment is triggered by guanine nucleotide exchange activating the Arf1 GTPase, but the key exchange factor, GBF1, is a peripheral membrane component whose membrane association is dependent on another GTPase, Rab1. Inactive Rab GTPases are in a soluble complex with guanine nucleotide dissociation inhibitor (GDI) and activation of Rab GTPases by exchange factors can be enhanced by GDI dissociation factors (GDFs). In the present study, we investigated the vesicle docking protein p115 and it’s binding to the Rab1 isoform Rab1b. Inhibition of p115 expression induced dissociation of Rab1b from Golgi membranes. Rab1b bound the cc2 domain of p115 and p115 lacking this domain failed to recruit Rab1b. Further, p115 inhibition blocked association of the COPI coat with Golgi membranes and this was suppressed by constitutive activation of Rab1b. These findings show p115 enhancement of Rab1b activation leading to COPI recruitment suggesting a connection between the vesicle docking machinery and the vesicle coat complex during the establishment of post-ER compartment identity

    Capacity of the Golgi Apparatus for Biogenesis from the Endoplasmic Reticulum

    No full text
    It is unclear whether the mammalian Golgi apparatus can form de novo from the ER or whether it requires a preassembled Golgi matrix. As a test, we assayed Golgi reassembly after forced redistribution of Golgi matrix proteins into the ER. Two conditions were used. In one, ER redistribution was achieved using a combination of brefeldin A (BFA) to cause Golgi collapse and H89 to block ER export. Unlike brefeldin A alone, which leaves matrix proteins in relatively large remnant structures outside the ER, the addition of H89 to BFA-treated cells caused ER accumulation of all Golgi markers tested. In the other, clofibrate treatment induced ER redistribution of matrix and nonmatrix proteins. Significantly, Golgi reassembly after either treatment was robust, implying that the Golgi has the capacity to form de novo from the ER. Furthermore, matrix proteins reemerged from the ER with faster ER exit rates. This, together with the sensitivity of BFA remnants to ER export blockade, suggests that presence of matrix proteins in BFA remnants is due to cycling via the ER and preferential ER export rather than their stable assembly in a matrix outside the ER. In summary, the Golgi apparatus appears capable of efficient self-assembly
    corecore