5 research outputs found

    Role of IL-33 and ST2 signalling pathway in multiple sclerosis: expression by oligodendrocytes and inhibition of myelination in central nervous system

    Get PDF
    Recent research findings have provided convincing evidence indicating a role for Interleukin-33 (IL-33) signalling pathway in a number of central nervous system (CNS) diseases including multiple sclerosis (MS) and Alzheimer’s disease. However, the exact function of IL-33 molecule within the CNS under normal and pathological conditions is currently unknown. In this study, we have mapped cellular expression of IL-33 and its receptor ST2 by immunohistochemistry in the brain tissues of MS patients and appropriate controls; and investigated the functional significance of these findings in vitro using a myelinating culture system. Our results demonstrate that IL-33 is expressed by neurons, astrocytes and microglia as well as oligodendrocytes, while ST2 is expressed in the lesions by oligodendrocytes and within and around axons. Furthermore, the expression levels and patterns of IL-33 and ST2 in the lesions of acute and chronic MS patient brain samples are enhanced compared with the healthy brain tissues. Finally, our data using rat myelinating co-cultures suggest that IL-33 may play an important role in MS development by inhibiting CNS myelination

    Comparative Study on the Therapeutic Potential of Neurally Differentiated Stem Cells in a Mouse Model of Multiple Sclerosis

    Get PDF
    Background: Transplantation of neural stem cells (NSCs) is a promising novel approach to the treatment of neuroinflammatory diseases such as multiple sclerosis (MS). NSCs can be derived from primary central nervous system (CNS) tissue or obtained by neural differentiation of embryonic stem (ES) cells, the latter having the advantage of readily providing an unlimited number of cells for therapeutic purposes. Using a mouse model of MS, we evaluated the therapeutic potential of NSCs derived from ES cells by two different neural differentiation protocols that utilized adherent culture conditions and compared their effect to primary NSCs derived from the subventricular zone (SVZ). Methodology/Principal Findings: The proliferation and secretion of pro-inflammatory cytokines by antigen-stimulated splenocytes was reduced in the presence of SVZ-NSCs, while ES cell-derived NSCs exerted differential immunosuppressive effects. Surprisingly, intravenously injected NSCs displayed no significant therapeutic impact on clinical and pathological disease outcomes in mice with experimental autoimmune encephalomyelitis (EAE) induced by recombinant myelin oligodendrocyte glycoprotein, independent of the cell source. Studies tracking the biodistribution of transplanted ES cellderived NSCs revealed that these cells were unable to traffic to the CNS or peripheral lymphoid tissues, consistent with the lack of cell surface homing molecules. Attenuation of peripheral immune responses could only be achieved through multiple high doses of NSCs administered intraperitoneally, which led to some neuroprotective effects within the CNS

    Additional file 1: Figure S1. of Role of IL-33 and ST2 signalling pathway in multiple sclerosis: expression by oligodendrocytes and inhibition of myelination in central nervous system

    No full text
    Immunohistochemical staining of IL-33 and ST2 in human lung tissues. (A) IL-33 matched isotype control antibody staining in human lung (a) and brain (b) samples, and IL-33 staining in human lung sample (c and d). (B) ST2 matched isotype control antibody staining in human lung (a) and brain (b) tissues; ST2 staining in human lung sample (c and d). (a, b and c), x10 magnification; d. x25 magnification. (PDF 215 kb

    Additional file 3: Figure S3. of Role of IL-33 and ST2 signalling pathway in multiple sclerosis: expression by oligodendrocytes and inhibition of myelination in central nervous system

    No full text
    The number of axons and myelinated axons at DIV 12, 18 and 28 of the rat CNS myelinating culture. (A) Percentage of SMI-31+ cells in view field; (B) Percentage of MBP+ axons in view filed. (C) Representative images of SMI-31 and MBP staining in the myelinating culture at DIV 12, 18 and 28. Data are presented as Mean + SEM, and were compiled from three independent experiments. (DOC 356 kb

    MHC class II–dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies

    No full text
    Whether B cells serve as antigen-presenting cells (APCs) for activation of pathogenic T cells in the multiple sclerosis model experimental autoimmune encephalomyelitis (EAE) is unclear. To evaluate their role as APCs, we engineered mice selectively deficient in MHC II on B cells (B-MHC II-/-), and to distinguish this function from antibody production, we created transgenic (Tg) mice that express the myelin oligodendrocyte glycoprotein (MOG)-specific B cell receptor (BCR; IgH(MOG-mem)) but cannot secrete antibodies. B-MHC II-/- mice were resistant to EAE induced by recombinant human MOG (rhMOG), a T cell-and B cell-dependent autoantigen, and exhibited diminished Th1 and Th17 responses, suggesting a role for B cell APC function. In comparison, selective B cell IL-6 deficiency reduced EAE susceptibility and Th17 responses alone. Administration of MOG-specific antibodies only partially restored EAE susceptibility in B-MHC II-/- mice. In the absence of antibodies, IgH(MOG-mem) mice, but not mice expressing a BCR of irrelevant specificity, were fully susceptible to acute rhMOG-induced EAE, also demonstrating the importance of BCR specificity. Spontaneous opticospinal EAE and meningeal follicle-like structures were observed in IgH(MOG-mem) mice crossed with MOG-specific TCR Tg mice. Thus, B cells provide a critical cellular function in pathogenesis of central nervous system autoimmunity independent of their humoral involvement, findings which may be relevant to B cell-targeted therapies
    corecore