281 research outputs found

    Status of the variable diameter centerbody inlet program

    Get PDF
    The Variable Diameter Centerbody (VDC) inlet is an ongoing research program at LeRC. The VDC inlet is a mixed compression, axisymmetric inlet that has potential application on the next generation supersonic transport. This inlet was identified as one of the most promising axisymmetric concepts for supersonic cruise aircraft during the SCAR program in the late 1970's. Some of its features include high recovery, low bleed, good angle-of-attack tolerance, and excellent engine airflow matching. These features were demonstrated at LeRC in the past by the design and testing of fixed hardware models. A current test program in the LeRC 10' x 10' Supersonic Wind Tunnel (SWT) will attempt to duplicate these features on model hardware that actually incorporates a flight-like variable diameter centerbody mechanism

    System Modeling of Lunar Oxygen Production: Mass and Power Requirements

    Get PDF
    A systems analysis tool for estimating the mass and power requirements for a lunar oxygen production facility is introduced. The individual modeling components involve the chemical processing and cryogenic storage subsystems needed to process a beneficiated regolith stream into liquid oxygen via ilmenite reduction. The power can be supplied from one of six different fission reactor-converter systems. A baseline system analysis, capable of producing 15 metric tons of oxygen per annum, is presented. The influence of reactor-converter choice was seen to have a small but measurable impact on the system configuration and performance. Finally, the mission concept of operations can have a substantial impact upon individual component size and power requirements

    Mars ISRU for Production of Mission Critical Consumables - Options, Recent Studies, and Current State of the Art

    Get PDF
    In 1978, a ground breaking paper titled, "Feasibility of Rocket Propellant Production on Mars" by Ash, Dowler, and Varsi discussed how ascent propellants could be manufactured on the Mars surface from carbon dioxide collected from the atmosphere to reduce launch mass. Since then, the concept of making mission critical consumables such as propellants, fuel cell reactants, and life support consumables from local resources, commonly known as In-Situ Resource Utilization (ISRU), for robotic and human missions to Mars has been studied many times. In the late 1990's, NASA initiated a series of Mars Human Design Reference Missions (DRMs), the first of which was released in 1997. These studies primarily focused on evaluating the impact of making propellants on Mars for crew ascent to Mars orbit, but creating large caches of life support consumables (water & oxygen) as a backup for regenerative life support systems for long-duration surface stays (>500 days) was also considered in Mars DRM 3.0. Until science data from the Mars Odyssey orbiter and subsequent robotic missions revealed that water may be widely accessable across the surface of Mars, prior Mars ISRU studies were limited to processing Mars atmospheric resources (carbon dioxide, nitrogen, argon, oxygen, and water vapor). In December 2007, NASA completed the Mars Human Design Reference Architecture (DRA) 5.0 study which considered water on Mars as a potential resource for the first time in a human mission architecture. While knowledge of both water resources on Mars and the hardware required to excavate and extract the water were very preliminary, the study concluded that a significant reduction in mass and significant enhancements to the mission architecture were possible if Mars water resources were utilized. Two subsequent Mars ISRU studies aimed at reexamining ISRU technologies, processing options, and advancements in the state-of-the-art since 2007 and to better understand the volume and packaging associated with Mars ISRU systems further substantiated the preliminary results from the Mars DRA 5.0 study. This paper will provide an overview of Mars ISRU consumable production options, the analyses, results, and conclusions from the Mars DRA 5.0 (2007), Mars Collaborative (2013), and Mars ISRU Payload for the Supersonic Retro Propulsion (2014) mission studies, and the current state-of-the-art of Mars ISRU technologies and systems. The paper will also briefly discuss the mission architectural implications associated with Mars resource and ISRU processing options

    Advanced Manifolds for Improved Solid Oxide Electrolyzer Performance

    Get PDF
    An investigation was conducted to see if additive manufacturing could be used to fabricate more efficient manifold designs for improved flow, reduced stresses, and decreased number of joints to be sealed for a solid oxide electrolyzer used to convert carbon dioxide to oxygen. Computational flow and mechanical modeling were conducted on a NASA Glenn Research Center patented cell and stack design with the potential to achieve a 3-4 times mass reduction. Various manifold designs were modeled, and two were downselected to be fabricated and tested. Some benefit was seen in a baffled manifold design, which directed incoming flow more effectively into the flow channels, compared to the original design, where the flow spent more time within the manifold itself. Flow measurements indicated some non-uniformity of flow across the channels at higher flow rates, which were not predicted by the model. Some possible explanations for the differences are discussed

    NASA Oxygen and Water Production Architectures for Early Reusable Lander

    Get PDF
    The presentation covers two recent studies Lunar In Situ Resource Utilization (ISRU) systems to produce propellant for an early reusable lander architecture. The first study examines the hardware, power, and operations required to produce 10 metric tons of oxygen per year near the lunar south pole using the Carbothermal Reduction process. The second study examines the hardware, power, and operations to mine and process 15 metric tons of water from a permanently shadowed crater near Shackleton crater

    Effects of an interactive CD-program on 6 months readmission rate in patients with heart failure – a randomised, controlled trial [NCT00311194]

    Get PDF
    BACKGROUND: Disease-management programmes including patient education have promoted improvement in outcome for patients with heart failure. However, there is sparse evidence concerning which component is essential for success, and very little is known regarding the validity of methods or material used for the education. METHODS: Effects of standard information to heart failure patients given prior to discharge from hospital were compared with additional education by an interactive program on all-cause readmission or death within 6 months. As a secondary endpoint, patients' general knowledge of heart failure and its treatment was tested after 2 months. RESULTS: Two hundred and thirty patients were randomised to standard information (S) or additional CD-ROM education (E). In (S) 52 % reached the endpoint vs. 49 % in (E). This difference was not significant. Of those who completed the questionnaire (37 %), patients in (E) achieved better knowledge and a marginally better outcome. CONCLUSION: The lack of effect on the readmission rate could be due to an insufficient sample size but might also indicate that in pharmacologically well-treated patients there is little room for altering the course of the condition. As there was some indication that patients who knew more about their condition might fare better, the place for intensive education and support of heart failure patients has yet to be determined

    Influence of intense multidisciplinary follow-up and orlistat on weight reduction in a primary care setting

    Get PDF
    BACKGROUND: Obesity is the most common health problem in developed countries. Recently, several physicians' organizations have issued recommendations for treating obesity to family physicians, including instructions in nutrition, physical activity and medications. The aim of this study was to examine if effective weight-reducing treatment can be given by a family physician. It compares regular treatment with intensive treatment that include close follow-up and orlistat treatment. METHODS: The study was conducted in three primary care clinics. 225 patients were divided into three groups according to their choice. Group A received a personal diet with fortnightly meetings with the family physician and dietitian and orlistat treatment. Group B received a general diet, monthly meetings with the family physician only and orlistat treatment. Group C received a personal diet, monthly meetings with the dietitian only and no drug treatment. The primary endpoint was reduction of at least 5% of the initial weight during the study period. RESULTS: A greater percentage of patients in group A achieved their weight reduction goals than in other groups (51%, 13% and 9% in groups A, B and C, respectively, p < 0.001). There was a significant reduction in triglycerides in all groups, a significant reduction of low density lipids (LDL) in groups A and B and no significant difference in high density lipids (HDL) in any group. CONCLUSIONS: Significant weight reduction was obtained in a family physician setting. Further research is needed to evaluate if, by providing the family physician with the proper tools, similar success can be achieved in more clinics

    Study of mass and momentum transfer in diesel sprays base on X-ray mass distribution measurements and on a theoretical derivation

    Full text link
    [EN] In this paper, a research aimed at quantifying mass and momentum transfer in the near-nozzle field of diesel sprays injected into stagnant ambient air is reported. The study combines X-ray measurements for two different nozzles and axial positions, which provide mass distributions in the spray, with a theoretical model based on momentum flux conservation, which was previously validated. This investigation has allowed the validation of Gaussian profiles for local fuel concentration and velocity near the nozzle exit, as well as the determination of Schmidt number at realistic diesel spray conditions. This information could be very useful for those who are interested in spray modeling, especially at high-pressure injection conditions. © 2010 Springer-Verlag.This work was partly sponsored by "Vicerrectorado de Investigacion, Desarrollo e Innovacion'' of the "Universidad Politecnica de Valencia'' in the frame of the project "Estudio del flujo en el interior de toberas de inyeccion Diesel'', reference no. 3150 and by "Generalitat Valenciana'' in the frame of the project with the same title and reference GV/2009/031. This support is gratefully acknowledged by the authors.Desantes, J.; Salvador Rubio, FJ.; López, JJ.; De La Morena, J. (2011). Study of mass and momentum transfer in diesel sprays base on X-ray mass distribution measurements and on a theoretical derivation. Experiments in Fluids. 50(2):233-246. https://doi.org/10.1007/s00348-010-0919-8S233246502Abramovich GN (1963) The theory of turbulent jets. MIT Press, Cambridge, MAAdler D, Lyn WT (1969) The evaporation and mixing of a liquid fuel spray in a Diesel air swirl. Proc Instn Mech Eng 184:171–180Coghe A, Cossali GE (1994) Phase Doppler characterisation of a Diesel spray injected into a high density gas under vaporisation regimes. In: 7th international symposium on application of laser techniques to fluid mechanics, LisbonCorreas D (1998) Theoretical and experimental study of isothermal Diesel free sprays (in Spanish). PhD Thesis, Universidad Politécnica de ValenciaCossali GE (2001) An integral model for gas entrainment into full cone sprays. J Fluid Mech 439:353–366Dent JC (1971) A basis for the comparison of various experimental methods for studying spray penetration. SAE Paper 710571Desantes JM, Payri R, Salvador FJ, Gil A (2006a) Deduction and validation of a theoretical model for a free diesel Spray. Fuel 85:910–917Desantes JM, Arrègle J, López JJ, Cronhjort A (2006b) Scaling laws for free turbulent gas jets and Diesel-like sprays. Atomization Spray 16:443–473Desantes JM, Payri R, García JM, Salvador FJ (2007) A contribution to the understanding of isothermal diesel spray dynamics. Fuel 86:1093–1101Dumouchel C (2008) On the experimental investigation on primary atomization of liquid streams. Exp Fluids 45:371–422Heimgärtner C, Leipertz A (2000) of the primary spray break-up close to the nozzle of a common-rail high pressure diesel injection system. SAE Paper 2000-01-1799Hinze JO (1975) Turbulence. McGraw Hill, New YorkHiroyasu H, Arai M (1990) Structures of fuel sprays in diesel engines. SAE Paper 900475Jawad B, Gulari E, Henein NA (1992) Characteristics of intermittent fuel sprays. Combust Flame 88:384–396Lefèbvre AH (1989) Atomization and sprays. Hemisphere, New YorkLeick P, Riedel T, Bittlinger G, Powell CF, Kastengren AL, Wang J (2007) X-Ray measurements of the mass distribution in the dense primary break-up region of the spray from a standard multi-hole common-rail diesel injection system. In: Proc 21st ILASS (Europe)Linne M, Paciaroni M, Hall T, Parker T (2006) Ballistic imaging of the near field in a diesel spray. Exp Fluids 40:836–846Naber J, Siebers DL (1996) Effects of gas density and vaporisation on penetration and dispersion of diesel sprays. SAE Paper 960034Payri F, Bermúdez V, Payri R, Salvador FJ (2004) The influence of cavitation on the internal flow and the Spray characteristics in diesel injection nozzles. Fuel 83:419–431Payri R, García JM, Salvador FJ, Gimeno J (2005) Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel 84:551–561Payri R, Tormos B, Salvador FJ, Araneo L (2008) Spray droplet velocity characterization for convergent nozzles with three different diameters. Fuel 87:3176–3182Post S, Iyer V, Abraham J (2000) A study of near-field entrainment in gas jets and sprays under diesel conditions. ASME J Fluids Eng 122:385–395Prasad CMV, Kar S (1976) An investigation on the diffusion of momentum and mass of fuel in a diesel fuel spray. ASME J Eng Power 76-DGP-1:1–11Rajaratnam N (1976) Turbulent jets. Elsevier, AmsterdamRamirez AI, Som S, Aggarwal SK, Kastengren AL, El-Hannouny EM, Longman DE, Powell CF (2009) Quantitative X-ray measurements of high-pressure fuel sprays from a production heavy duty diesel injector. Exp Fluids 47:119–134Reitz RD, Bracco FV (1982) Mechanism of atomisation of a liquid jet. Phys Fluids 25(10):1730–1742Ricou FP, Spalding DB (1961) Measurements of entrainment by axisymmetrical turbulent jets. J Fluid Mech 11:21–32Rife J, Heywood JB (1974) Photographic and performance studies of diesel combustion with a rapid compression machine. SAE Paper 740948Roisman IV, Tropea C (2001) Flux measurements in sprays using phase doppler techniques. Atomization Spray 11:667–699Roisman IV, Araneo L, Tropea C (2007) Effect of ambient pressure on penetration of a diesel spray. Int J Multiphase Flow 33(8):904–920Saliba R, Baz I, Champoussin JC, Lance M, Marié JL (2004) Cavitation effect on the near nozzle spray development in high-pressure diesel injection. In: Proc 19th ILASS (Europe)Schlichting H (1978) Boundary layer theory. McGraw Hill, New YorkSinnamon JF, Lancaster DR, Stiener JC (1980) An experimental and analytical study of engine fuel spray trajectories. SAE Paper 800135Sou A, Hosokawa S, Tomiyama A (2007) Effects of cavitation in a nozzle on liquid jet atomization. Int J Heat Mass Tran 50(17–18):3575–3582Spalding DB (1979) Combustion and mass transfer. Pergamon Press, New YorkSubramaniam S (2001) Statistical modelling of a spray as using the droplet distribution function. Phys Fluids 13(3):624–642Tanner FX, Feigl A, Ciatti SA, Powell CF, Cheong S-K, Liu J, Wang J (2006) Structure of high-velocity dense sprays in the near-nozzle region. Atomization Spray 16:579–597Way RJB (1977) Investigation of interaction between swirl and jets in direct injection diesel engines using a water model. SAE Paper 770412Wu KJ, Santavicca DA, Bracco FV (1984) LDV measurements of drop velocity in diesel-type sprays. AAIA J 22(9):1263–1270Wu KJ, Reitz RD, Bracco FV (1986) Measurements of drop size at the spray edge near the nozzle in atomising liquid jets. Phys Fluids 29(4):941–951Yue Y, Powell CF, Poola R, Wang J, Schaller JK (2001) Quantitative measurements of diesel fuel spray characteristics in the near-nozzle region using X-ray absorption. Atomization Spray 11(4):471–49
    corecore