66 research outputs found

    Environmental enrichment requires adult neurogenesis to facilitate the recovery from psychosocial stress

    Get PDF
    The subgranular zone of the adult hippocampal dentate gyrus contains a pool of neural stem cells that continuously divide and differentiate into functional granule cells. It has been shown that production of new hippocampal neurons is necessary for amelioration of stress-induced behavioral changes by antidepressants in animal models of depression. The survival of newly born hippocampal neurons is decreased by chronic psychosocial stress and increased by exposure to enriched environments. These observations suggest the existence of a link between hippocampal neurogenesis, stress-induced behavioral changes, and the beneficial effects of enriched environment. To show causality, we subjected transgenic mice with conditionally suppressed neurogenesis to psychosocial stress followed by environmental enrichment. First, we showed that repeated social defeat coupled with chronic exposure to an aggressor produces robust and quantifiable indices of submissive and depressive-like behaviors; second, subsequent exposure to an enriched environment led to extinction of the submissive phenotype, while animals exposed to an impoverished environment retained the submissive phenotype; and third, enrichment was not effective in reversing the submissive and depressive-like behaviors in transgenic mice lacking neurogenesis. Our data show two main findings. First, living in an enriched environment is highly effective in extinguishing submissive behavioral traits developed during chronic social stress, and second, these effects are critically dependent on adult neurogenesis, indicating that beneficial behavioral adaptations are dependent on intact adult neurogenesis

    Anti-depressant and anxiolytic like behaviors in PKCI/HINT1 knockout mice associated with elevated plasma corticosterone level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein kinase C interacting protein (PKCI/HINT1) is a small protein belonging to the histidine triad (HIT) family proteins. Its brain immunoreactivity is located in neurons and neuronal processes. PKCI/HINT1 gene knockout (KO) mice display hyper-locomotion in response to D-amphetamine which is considered a positive symptom of schizophrenia in animal models. <it>Postmortem </it>studies identified PKCI/HINT1 as a candidate molecule for schizophrenia and bipolar disorder. We investigated the hypothesis that the PKCI/HINT1 gene may play an important role in regulating mood function in the CNS. We submitted PKCI/HINT1 KO mice and their wild type (WT) littermates to behavioral tests used to study anti-depressant, anxiety like behaviors, and goal-oriented behavior. Additionally, as many mood disorders coincide with modifications of hypothalamic-pituitary-adrenal (HPA) axis function, we assessed the HPA activity through measurement of plasma corticosterone levels.</p> <p>Results</p> <p>Compared to the WT controls, KO mice exhibited less immobility in the forced swim (FST) and the tail suspension (TST) tests. Activity in the TST tended to be attenuated by acute treatment with valproate at 300 mg/kg in KO mice. The PKCI/HINT1 KO mice presented less thigmotaxis in the Morris water maze and spent progressively more time in the lit compartment in the light/dark test. In a place navigation task, KO mice exhibited enhanced acquisition and retention. Furthermore, the afternoon basal plasma corticosterone level in PKCI/HINT1 KO mice was significantly higher than in the WT.</p> <p>Conclusion</p> <p>PKCI/HINT1 KO mice displayed a phenotype of behavioral and endocrine features which indicate changes of mood function, including anxiolytic-like and anti-depressant like behaviors, in conjunction with an elevated corticosterone level in plasma. These results suggest that the PKCI/HINT 1 gene could be important for the mood regulation function in the CNS.</p

    In Search of HPA Axis Dysregulation in Child and Adolescent Depression

    Get PDF
    Dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis in adults with major depressive disorder is among the most consistent and robust biological findings in psychiatry. Given the importance of the adolescent transition to the development and recurrence of depressive phenomena over the lifespan, it is important to have an integrative perspective on research investigating the various components of HPA axis functioning among depressed young people. The present narrative review synthesizes evidence from the following five categories of studies conducted with children and adolescents: (1) those examining the HPA system’s response to the dexamethasone suppression test (DST); (2) those assessing basal HPA axis functioning; (3) those administering corticotropin-releasing hormone (CRH) challenge; (4) those incorporating psychological probes of the HPA axis; and (5) those examining HPA axis functioning in children of depressed mothers. Evidence is generally consistent with models of developmental psychopathology that hypothesize that atypical HPA axis functioning precedes the emergence of clinical levels of depression and that the HPA axis becomes increasingly dysregulated from child to adult manifestations of depression. Multidisciplinary approaches and longitudinal research designs that extend across development are needed to more clearly and usefully elucidate the role of the HPA axis in depression

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Food and the circadian activity of the hypothalamic-pituitary-adrenal axis

    Full text link

    Food of the squid Ommastrephes bartramii (Lesueur, 1821) from the South-West Atlantic Ocean

    No full text
    The diet of Ommastrephes bartramii (Lesueur, 1821) was determined by analysing the stomach contents of 73 squid caught in the South-West Atlantic Ocean. There were three main prey groups, Cephalopoda (in 82% of the squid stomachs), Osteichthyes (34%) and Crustacea (18%). Cannibalism was common. Squid of the families Histioteuthidae and Enoploteuthidae and other teuthoids were less frequent in the diet. The fish prey was predominantly Myctophidae, of various species. The bulk of the prey was mesopelagic species that migrate into the epipelagic layers at night

    Age and growth of Brauer’s lanternfish Gymnoscopelus braueri and rhombic lanternfish Krefftichthys anderssoni (Family Myctophidae) in the Scotia Sea, Southern Ocean

    Get PDF
    This study examines age and growth of Brauer's lanternfish Gymnoscopelus braueri and rhombic lanternfish Krefftichthys anderssoni from the Scotia Sea in the Southern Ocean, through the analysis of annual growth increments deposited on sagittal otoliths. Otolith pairs from 177 G. braueri and 118 K. anderssoni were collected in different seasons from the region between 2004 and 2009. Otolith‐edge analysis suggested a seasonal change in opaque and hyaline depositions, indicative of an annual growth pattern, although variation within the populations of both species was apparent. Age estimates varied from 1 to 6 years for G. braueri (40 to 139 mm standard length; LS) and from 0 to 2 years for K. anderssoni (26 to 70 mm LS). Length‐at‐age data were broadly consistent with population cohort parameters identified in concurrent length‐frequency data from the region for both species. The estimated values of von Bertalanffy growth curves for G. braueri were L∞ = 133.22 mm, k = 0.29 year–1 and t0 = –0.21 year and the values for K. anderssoni were L∞ = 68.60 mm, k = 0.71 year–1 and t0 = –0.49 years. There were no significant (P > 0.05) differences in growth between sexes for either species, suggesting that males and females have similar growth and development trajectories in the Scotia Sea. A positive allometric relationship between LS and wet mass was found for each species, as well as a significant (P <0.0001) linear relationship between otolith size and LS. Growth performance (Ф′) was similar between the two species and congruent with other myctophid species across the Southern Ocean. This study provides important parameters for future Southern Ocean ecosystem studies in a resource management context
    corecore