7,983 research outputs found

    A strong ν¨ν˙\ddot{\nu} - \dot{\nu} correlation in radio pulsars with implications for torque variations

    Full text link
    We present an analysis of the spin-down parameters for 131 radio pulsars for which ν¨\ddot\nu has been well determined. These pulsars have characteristic ages ranging from 10310810^{3} - 10^{8} yr and spin periods in the range 0.4--30 s; nearly equal numbers of pulsars have ν¨>0\ddot\nu>0 as ν¨<0\ddot\nu<0. We find a strong correlation of ν¨\ddot\nu with ν˙\dot{\nu}, {\em independent of the sign of} ν¨\ddot\nu. We suggest that this trend can be accounted for by small, stochastic deviations in the spin-down torque that are directly proportional (in magnitude) to the spin-down torque.Comment: MNRAS, 4 pages, 2 figures. Minor editorial changes and typos correcte

    SMMR simulator radiative transfer calibration model. 1: Derivation

    Get PDF
    There are no author-identified significant results in this report

    Starquake-Induced Glitches in Pulsars

    Get PDF
    The neutron star crust is rigid material floating on a neutron-proton liquid core. As the star's spin rate slows, the changing stellar shape stresses the crust and causes fractures. These starquakes may trigger pulsar glitches as well as the jumps in spin-down rate that are observed to persist after some glitches. Earlier studies found that starquakes in spinning-down neutron stars push matter toward the magnetic poles, causing temporary misalignment of the star's spin and angular momentum. After the star relaxes to a new equilibrium orientation, the magnetic poles are closer to the equator, and the magnetic braking torque is increased. The magnitude and sign of the predicted torque changes are in agreement with the observed persistent spin-down offsets. Here we examine the relaxation processes by which the new equilibrium orientation is reached. We find that the neutron superfluid in the inner crust slows as the star's spin realigns with the angular momentum, causing the crust to spin more rapidly. For plausible parameters the time scale and the magnitude of the crust's spin up agree with the giant glitches in the Vela and other pulsars

    Sensitivity of an image plate system in the XUV (60 eV < E < 900 eV)

    Full text link
    Phosphor imaging plates (IPs) have been calibrated and proven useful for quantitative x-ray imaging in the 1 to over 1000 keV energy range. In this paper we report on calibration measurements made at XUV energies in the 60 to 900 eV energy range using beamline 6.3.2 at the Advanced Light Source at Lawrence Berkeley National Laboratory. We measured a sensitivity of ~25 plus or minus 15 counts/pJ over the stated energy range which is compatible with the sensitivity of Si photodiodes that are used for time-resolved measurements. Our measurements at 900 eV are consistent with the measurements made by Meadowcroft et al. at ~1 keV.Comment: 7 pages, 2 figure

    Correlation of Patient Symptoms With Labral and Articular Cartilage Damage in Femoroacetabular Impingement.

    Get PDF
    BackgroundFemoroacetabular impingement (FAI) can lead to labral and articular cartilage injuries as well as early osteoarthritis of the hip. Currently, the association of patient symptoms with the progression of labral and articular cartilage injuries due to FAI is poorly understood.PurposeTo evaluate the correlation between patient-reported outcome (PRO) scores and cartilage compositional changes seen on quantitative magnetic resonance imaging (MRI) as well as cartilage and labral damage seen during arthroscopic surgery in patients with FAI.Study designCohort study; Level of evidence, 3.MethodsPatients were prospectively enrolled before hip arthroscopic surgery for symptomatic FAI. Patients were included if they had cam-type FAI without radiographic arthritis. All patients completed PRO scores, including the Hip disability and Osteoarthritis Outcome Score (HOOS) and a visual analog scale for pain. MRI with mapping sequences (T1ρ and T2) on both the acetabular and femoral regions was performed before surgery to quantitatively assess the cartilage composition. During arthroscopic surgery, cartilage and labral injury grades were recorded using the Beck classification. Pearson and Spearman correlation coefficients were then obtained to evaluate the association between chondrolabral changes and PRO scores.ResultsA total of 46 patients (46 hips) were included for analysis (mean age, 35.5 years; mean body mass index [BMI], 23.9 kg/m2; 59% male). Increasing BMI was correlated with a more severe acetabular cartilage grade (ρ = 0.37; 95% CI, 0.08-0.65). A greater alpha angle was correlated with an increased labral tear grade (ρ = 0.59; 95% CI, 0.37-0.82) and acetabular cartilage injuries (ρ = 0.61; 95% CI, 0.42-0.80). With respect to PRO scores, increasing femoral cartilage damage in the anterosuperior femoral head region, as measured on quantitative MRI using T1ρ and T2 mapping, correlated with lower (worse) scores on the HOOS Activities of Daily Living (r = 0.35; 95% CI, 0.06-0.64), Symptoms (r = 0.32; 95% CI, 0.06-0.57), and Pain (r = 0.31; 95% CI, 0.06-0.55) subscales. There was no correlation between PRO scores and acetabular cartilage damage or labral tearing found on quantitative MRI or during arthroscopic surgery.ConclusionFemoral cartilage damage, as measured on T1ρ and T2 mapping, appears to have a greater correlation with clinical symptoms than acetabular cartilage damage or labral tears in patients with symptomatic FAI

    Fanthalamia kadiri nov. sp., a new “Sphinctozoan” sponge from the Triassic (Carnian) of Turkey

    Get PDF
    A new sphinctozoid sponge - Fanthalamia kadiri - is described from the Upper Triassic (Carnian) of the Antalya area, southern Turkey. This is the second species of the genus Fanthalamia found in Upper Triassic rocks of Turkey.Baba Senowbari-Daryan, Michael Link & Diego C. García-Bellid

    Tkachenko waves, glitches and precession in neutron star

    Full text link
    Here I discuss possible relations between free precession of neutron stars, Tkachenko waves inside them and glitches. I note that the proposed precession period of the isolated neutron star RX J0720.4-3125 (Haberl et al. 2006) is consistent with the period of Tkachenko waves for the spin period 8.4s. Based on a possible observation of a glitch in RX J0720.4-3125 (van Kerkwijk et al. 2007), I propose a simple model, in which long period precession is powered by Tkachenko waves generated by a glitch. The period of free precession, determined by a NS oblateness, should be equal to the standing Tkachenko wave period for effective energy transfer from the standing wave to the precession motion. A similar scenario can be applicable also in the case of the PSR B1828-11.Comment: 6 pages, no figures, accepted to Ap&S

    Pulsar Constraints on Neutron Star Structure and Equation of State

    Full text link
    With the aim of constraining the structural properties of neutron stars and the equation of state of dense matter, we study sudden spin-ups, glitches, occurring in the Vela pulsar and in six other pulsars. We present evidence that glitches represent a self-regulating instability for which the star prepares over a waiting time. The angular momentum requirements of glitches in Vela indicate that at least 1.4% of the star's moment of inertia drives these events. If glitches originate in the liquid of the inner crust, Vela's `radiation radius' must exceed ~12 km for a mass of 1.4 solar masses. Observational tests of whether other neutron stars obey this constraint will be possible in the near future.Comment: 5 pages, including figures. To appear in Physical Review Letter

    Correlated decay of triplet excitations in the Shastry-Sutherland compound SrCu2_2(BO3_3)2_2

    Get PDF
    The temperature dependence of the gapped triplet excitations (triplons) in the 2D Shastry-Sutherland quantum magnet SrCu2_2(BO3_3)2_2 is studied by means of inelastic neutron scattering. The excitation amplitude rapidly decreases as a function of temperature while the integrated spectral weight can be explained by an isolated dimer model up to 10~K. Analyzing this anomalous spectral line-shape in terms of damped harmonic oscillators shows that the observed damping is due to a two-component process: one component remains sharp and resolution limited while the second broadens. We explain the underlying mechanism through a simple yet quantitatively accurate model of correlated decay of triplons: an excited triplon is long-lived if no thermally populated triplons are near-by but decays quickly if there are. The phenomenon is a direct consequence of frustration induced triplon localization in the Shastry--Sutherland lattice.Comment: 5 pages, 4 figure
    corecore