123 research outputs found

    The Effects of Fire on the Function of the 200-BP-1 Engineered Surface Barrier

    Get PDF
    A critical unknown in use of barrier technology for long-term waste isolation is performance after a major disturbance especially when institutional controls are intact, but there are no resources to implement corrective actions. The objective of this study was to quantify the effects of wild fire on alterations the function of an engineered barrier. A controlled burn September 26, 2008 was used to remove all the vegetation from the north side of the barrier. Flame heights exceeded 9 m and temperatures ranged from 250 oC at 1.5 cm below the surface to over 700 oC at 1 m above the surface. Post-fire analysis of soil properties show significant decreases in wettability, hydraulic conductivity, air entry pressure, organic matter, and porosity relative to pre-fire conditions whereas dry bulk density increased. Decreases in hydraulic conductivity and wettabilty immediately after the fire are implicated in a surface runoff event that occurred in January 2009, the first in 13 years. There was a significant increase in macro-nutrients, pH, and electrical conductivity. After one year, hydrophobicity has returned to pre-burn levels with only 16% of samples still showing signs of decreased wettability. Over the same period, hydraulic conductivity and air entry pressure returned to pre-burn levels at one third of the locations but remained identical to values recorded immediately after the fire at the other two thirds. Soil nutrients, pH, and electrical conductivity remain elevated after 1 year. Species composition on the burned surface changed markedly from prior years and relative to the unburned surface and two analog sites. An increase in the proportion of annuals and biennials is characteristic of burned surfaces that have become dominated by ruderal species. Greenhouse seedling emergence tests conducted to assess the seed bank of pre- and post-burn soils and of two analog sites at the McGee Ranch show no difference in the number of species emerging from soils collected before and after the fire. However, there were fewer species emerging from the seed bank on the side slopes and more species emerging from two analog sites. Leaf area index measures confirmed the substantial differences in plant communities after fire. Xylem pressure potential were considerably higher on the burned half of the barrier in September 2009 suggesting that not all the water in the soil profile will be removed before the fall rains begin. The results of this study are expected to contribute to a better understanding of barrier performance after major disturbances in a post-institutional control environment. Such an understanding is needed to enhance stakeholder acceptance regarding the long-term efficacy of engineered barriers. This study will also support improvements in the design of evapotranspiration (ET) and hybrid (ET + capacitive) barriers and the performance monitoring systems

    200-BP-1 Prototype Hanford Barrier - 15 Years of Performance Monitoring

    Get PDF
    Engineered surface barriers are recognized as a remedial alternative to the removal, treatment and disposal of near-surface contaminants at a variety of waste sites within the DOE complex. One issue impacting their acceptance by stakeholders the use of limited data to predict long-term performance. In 1994, a 2-ha multi-component barrier was constructed over an existing waste disposal site at Hanford using natural materials. Monitoring has been almost continuous for the last 15 yrs and has focused on barrier stability, vegetative cover, plant and animal intrusion, and the components of the water balance, including precipitation, runoff, storage, drainage, and percolation. The total precipitation received from October 1994 through August 2008 was 3311 mm on the northern half (formerly irrigated), and 2638 mm on the southern, non-irrigated half. Water storage in the fine-soil layer shows a cyclic pattern, increasing in the winter and decreasing in the spring and summer to a lower limit of around 100 mm, regardless of precipitation, in response to evapotranspiration. Topographic surveys show the barrier and side slopes to be stable and the pea-gravel admix has proven effective in minimizing erosion through the creation of a desert pavement during deflationary periods. Three runoff events have been observed but the 600-mm design storage capacity has never been exceeded. Total percolation ranged from near zero amounts under the soil-covered plots to over 600 mm under the side slopes. The asphaltic concrete prevented any of this water from reaching the buried waste thereby eliminating the driving force for the contaminant remobilization. Plant surveys show a relatively high coverage of native plants still persists after the initial revegetation although the number of species decreased from 35 in 1994 to 10 in 2009. Ample evidence of insect and small mammal use suggests that the barrier is behaving like a recovering ecosystem. In September 2008, the north half of the barrier was burned to remove vegetation and study the effects of fire on barrier performance. The most immediate effects has been on water storage patterns with the bare surface showing a slower accumulation of water, a smaller peak storage and a delayed release relative to the unburned side due to evaporation . Nonetheless the residual storage at the end of the year was similar for the burned and unburned sides

    Survey of Revegetated Areas on the Fitzner/Eberhardt Arid Lands Ecology Reserve: Status and Initial Monitoring Results

    Full text link
    During 2010, the U.S. Department of Energy (DOE), Richland Operations Office removed a number of facilities and debris from the Fitzner/Eberhardt Arid Lands Ecology Reserve (ALE), which is part of the Hanford Reach National Monument (HRNM). Revegetation of disturbed sites is necessary to stabilize the soil, reduce invasion of these areas by exotic weeds, and to accelerate re-establishment of native plant communities. Seven revegetation units were identified on ALE based on soils and potential native plant communities at the site. Native seed mixes and plant material were identified for each area based on the desired plant community. Revegetation of locations affected by decommissioning of buildings and debris removal was undertaken during the winter and early spring of 2010 and 2011, respectively. This report describes both the details of planting and seeding for each of the units, describes the sampling design for monitoring, and summarizes the data collected during the first year of monitoring. In general, the revegetation efforts were successful in establishing native bunchgrasses and shrubs on most of the sites within the 7 revegetation units. Invasion of the revegetation areas by exotic annual species was minimal for most sites, but was above initial criteria in 3 areas: the Hodges Well subunit of Unit 2, and Units 6 and 7

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Albumin and multiple sclerosis

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Leakage of the blood–brain barrier (BBB) is a common pathological feature in multiple sclerosis (MS). Following a breach of the BBB, albumin, the most abundant protein in plasma, gains access to CNS tissue where it is exposed to an inflammatory milieu and tissue damage, e.g., demyelination. Once in the CNS, albumin can participate in protective mechanisms. For example, due to its high concentration and molecular properties, albumin becomes a target for oxidation and nitration reactions. Furthermore, albumin binds metals and heme thereby limiting their ability to produce reactive oxygen and reactive nitrogen species. Albumin also has the potential to worsen disease. Similar to pathogenic processes that occur during epilepsy, extravasated albumin could induce the expression of proinflammatory cytokines and affect the ability of astrocytes to maintain potassium homeostasis thereby possibly making neurons more vulnerable to glutamate exicitotoxicity, which is thought to be a pathogenic mechanism in MS. The albumin quotient, albumin in cerebrospinal fluid (CSF)/albumin in serum, is used as a measure of blood-CSF barrier dysfunction in MS, but it may be inaccurate since albumin levels in the CSF can be influenced by multiple factors including: 1) albumin becomes proteolytically cleaved during disease, 2) extravasated albumin is taken up by macrophages, microglia, and astrocytes, and 3) the location of BBB damage affects the entry of extravasated albumin into ventricular CSF. A discussion of the roles that albumin performs during MS is put forth
    corecore