25 research outputs found

    Effects of the functional HOTAIR rs920778 and rs12826786 genetic variants in glioma susceptibility and patient prognosis

    Get PDF
    Abnormal expression of the long non-coding RNA HOX transcript antisense intergenic RNA (HOTAIR) is oncogenic in several human cancers, including gliomas. The HOTAIR single nucleotide polymorphisms (SNPs) rs920778 (C > T) and rs12826786 (C > T) present in the intronic enhancer and promoter regions of HOTAIR, respectively, are associated with expression, cancer susceptibility, and patient prognosis in some tumor types. However, the relevance of these HOTAIR SNPs has not been studied in glioma. Here, we report a case-control study comprising 177 Portuguese glioma patients and 199 cancer-free controls. All subjects were genotyped by PCR and restriction fragment length polymorphism (RFLP). No statistically significant differences were found in the genotype or allele distributions of either rs920778 or rs12826786 between glioma patients and controls, suggesting these SNPs are not associated with glioma risk. No significant associations were found between rs920778 variants and HOTAIR expression levels, while rs12826786 CT genotype was associated with increased intratumoral HOTAIR RNA levels when compared to TT genotype (p-value = 0.04). Univariate (Log-rank) and multivariate (Cox proportional) analyses showed both rs920778 CT and rs12826786 CT genotypes were significantly associated with longer overall survival of WHO grade III anaplastic oligodendroglioma patients. Our results suggest that HOTAIR SNPs rs920778 and rs12826786 do not play a significant role in glioma susceptibility, but may be important prognostic factors in anaplastic oligodendroglioma patients. Future studies are warranted to validate and expand these findings, and to further dissect the importance of these SNPs in glioma.info:eu-repo/semantics/publishedVersio

    A Multi-Center, Qualitative Assessment of Pediatrician and Maternal Perspectives on Rotavirus Vaccines and the Detection of Porcine circovirus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 2010, researchers using novel laboratory techniques found that US-licensed rotavirus vaccines contain DNA or DNA fragments from <it>Porcine circovirus </it>(PCV), a virus common among pigs but not believed to cause illness in humans. We sought to understand pediatricians' and mothers' perspectives on this finding.</p> <p>Methods</p> <p>We conducted three iterations of focus groups for pediatricians and non-vaccine hesitant mothers in Seattle, WA, Cincinnati, OH, and Rochester, NY. Focus groups explored perceptions of rotavirus disease, rotavirus vaccination, and attitudes about the detection of PCV material in rotavirus vaccines.</p> <p>Results</p> <p>Pediatricians understood firsthand the success of rotavirus vaccines in preventing severe acute gastroenteritis among infants and young children. They measured this benefit against the theoretical risk of DNA material from PCV in rotavirus vaccines, determining overall that the PCV finding was of no clinical significance. Particularly influential was the realization that the large, randomized clinical trials that found both vaccines to be highly effective and safe were conducted with DNA material from PCV already in the vaccines.</p> <p>Most mothers supported the ideal of full disclosure regarding vaccination risks and benefits. However, with a scientific topic of this complexity, simplified information regarding PCV material in rotavirus vaccines seemed frightening and suspicious, and detailed information was frequently overwhelming. Mothers often remarked that if they did not understand a medical or technical topic regarding their child's health, they relied on their pediatrician's guidance.</p> <p>Many mothers and pediatricians were also concerned that persons who abstain from pork consumption for religious or personal reasons may have unsubstantiated fears of the PCV finding.</p> <p>Conclusions</p> <p>Pediatricians considered the detection of DNA material from PCV in rotavirus vaccines a "non-issue" and reported little hesitation in continuing to recommend the vaccines. Mothers desired transparency, but ultimately trusted their pediatrician's recommendation. Both vaccines are currently approved for their intended use, and no risk of human PCV illness has been reported. Communicating this topic to pediatricians and mothers requires sensitivity to a broad range of technical understanding and personal concerns.</p

    Intraspecific genetic diversity of Drechslera tritici-repentis as detected by random amplified polymorphic DNA analysis

    Get PDF
    The phytopathogenic fungus Drechslera tritici-repentis causes tan spot, an important disease of wheat in the southern Brazilian state of Rio Grande do Sul. Twelve D. tritici-repentis isolates were obtained from wheat seeds from different locations in the state. Their colony morphology on potato dextrose agar and polymorphisms in genomic DNA by the random amplified polymorphic DNA (RAPD) method were investigated. For the RAPD method, 23 primers were tested of which nine were selected for use in the study of D. tritici-repentis polymorphisms. The degree of similarity between isolates was calculated using a simple matching coefficient and dendrograms constructed by the unweighted pair-group method with arithmetical averages (UPGMA). The morphological and RAPD analyses showed intraspecific polymorphisms within the isolates, but it was not possible to establish a relationship between these polymorphisms and the geographical regions from where the host seeds were collected

    A patient with germ-line gain-of-function PDGFRB p.N666H mutation and marked clinical response to imatinib.

    No full text
    PurposeHeterozygous germ-line activating mutations in PDGFRB cause Kosaki and Penttinen syndromes and myofibromatosis. We describe a 10-year-old child with a germ-line PDGFRB p.N666H mutation who responded to the tyrosine kinase inhibitor imatinib by inhibition of PDGFRB.MethodsThe impact of p.N666H on PDGFRB function and sensitivity to imatinib was studied in cell culture.ResultsCells expressing the p.N666H mutation showed constitutive PDGFRB tyrosine phosphorylation. PDGF-independent proliferation was abolished by imatinib at 1 μM concentration. Patient fibroblasts showed constitutive receptor tyrosine phosphorylation that was also abrogated by imatinib with reduced proliferation of treated cells.This led to patient treatment with imatinib at 400 mg daily (340 mg/m2) for a year with objective improvement of debilitating hand and foot contractures, reduced facial coarseness, and significant improvement in quality of life. New small subcutaneous nodules developed, but remained stable. Transient leukopenia, neutropenia, and fatigue resolved without intervention; however, mildly decreased growth velocity resulted in reducing imatinib dose to 200 mg daily (170 mg/m2). The patient continues treatment with ongoing clinical response.ConclusionTo our knowledge, this is one of the first personalized treatments of a congenital disorder caused by a germ-line PDGF receptor mutation with a PDGFRB inhibitor
    corecore