54 research outputs found

    Regulation of Adipose Tissue Stromal Cells Behaviors by Endogenic Oct4 Expression Control

    Get PDF
    BACKGROUND: To clarify the role of the POU domain transcription factor Oct4 in Adipose Tissue Stromal Cells (ATSCs), we investigated the regulation of Oct4 expression and other embryonic genes in fully differentiated cells, in addition to identifying expression at the gene and protein levels. The ATSCs and several immature cells were routinely expressing Oct4 protein before and after differentiating into specific lineages. METHODOLOGY/PRINCIPAL FINDINGS AND CONCLUSIONS: Here, we demonstrated the role of Oct4 in ATSCs on cell proliferation and differentiation. Exogenous Oct4 improves adult ATSCs cell proliferation and differentiation potencies through epigenetic reprogramming of stemness genes such as Oct4, Nanog, Sox2, and Rex1. Oct4 directly or indirectly induces ATSCs reprogramming along with the activation of JAK/STAT3 and ERK1/2. Exogenic Oct4 introduced a transdifferentiation priority into the neural lineage than mesodermal lineage. Global gene expression analysis results showed that Oct4 regulated target genes which could be characterized as differentially regulated genes such as pluripotency markers NANOG, SOX2, and KLF4 and markers of undifferentiated stem cells FOXD1, CDC2, and EPHB1. The negatively regulated genes included FAS, TNFR, COL6A1, JAM2, FOXQ1, FOXO1, NESTIN, SMAD3, SLIT3, DKK1, WNT5A, BMP1, and GLIS3 which are implicated in differentiation processes as well as a number of novel genes. Finally we have demonstrated the therapeutic utility of Oct4/ATSCs were introduced into the mouse traumatic brain, engrafted cells was more effectively induces regeneration activity with high therapeutic modality than that of control ATSCs. Engrafted Oct4/ATSCs efficiently migrated and transdifferentiated into action potential carrying, functionally neurons in the hippocampus and promoting the amelioration of lesion cavities

    Identification of a Bipolar Disorder Vulnerable Gene CHDH at 3p21.1

    Get PDF
    Genome-wide analysis (GWA) is an effective strategy to discover extreme effects surpassing genome-wide significant levels in studying complex disorders; however, when sample size is limited, the true effects may fail to achieve genome-wide significance. In such case, there may be authentic results among the pools of nominal candidates, and an alternative approach is to consider nominal candidates but are replicable across different samples. Here, we found that mRNA expression of the choline dehydrogenase gene (CHDH) was uniformly upregulated in the brains of bipolar disorder (BPD) patients compared with healthy controls across different studies. Follow-up genetic analyses of CHDH variants in multiple independent clinical datasets (including 11,564 cases and 17,686 controls) identified a risk SNP rs9836592 showing consistent associations with BPD (P meta = 5.72 × 10(-4)), and the risk allele indicated an increased CHDH expression in multiple neuronal tissues (lowest P = 6.70 × 10(-16)). These converging results may identify a nominal but true BPD susceptibility gene CHDH. Further exploratory analysis revealed suggestive associations of rs9836592 with childhood intelligence (P = 0.044) and educational attainment (P = 0.0039), a 'proxy phenotype' of general cognitive abilities. Intriguingly, the CHDH gene is located at chromosome 3p21.1, a risk region implicated in previous BPD genome-wide association studies (GWAS), but CHDH is lying outside of the core GWAS linkage disequilibrium (LD) region, and our studied SNP rs9836592 is ∼1.2 Mb 3' downstream of the previous GWAS loci (e.g., rs2251219) with no LD between them; thus, the association observed here is unlikely a reflection of previous GWAS signals. In summary, our results imply that CHDH may play a previously unknown role in the etiology of BPD and also highlight the informative value of integrating gene expression and genetic code in advancing our understanding of its biological basis

    Research on modeling and control strategy of lithium battery energy storage system in new energy consumption

    No full text
    Energy storage technology is one of the effective means to promote the consumption of new energy. It has the advantages of improving the flexibility and stability of power grid. Energy storage plays an important role in improving the peaking and valley filling function of the load side of the power grid. Based on the two-stage topology of the energy storage system, this paper establishes the mirror model of the practical application engineering of the energy storage system, and uses the data-driven method to establish the energy storage battery model. On this basis, the multi-objective control strategy is adopted for the peak regulating power of the energy storage system and the load state balance of the battery. The support vector machine algorithm is used to predict the daily load data of the power grid, and the constant power algorithm is proposed to control the battery control node signal. Finally, taking the battery compartment of the energy storage system as the simulation object, the effectiveness of the proposed control strategy is verified, which provides a theoretical basis for the topic research

    PET Imaging of CD8 via SMART for Monitoring the Immunotherapy Response

    No full text
    Imaging of CD8 receptors on T-cells by positron emission tomography (PET) has been considered a promising strategy for monitoring the treatment response to immunotherapy. In this study, a trial of imaging CD8 with our newly developed sequential multiple-agent receptor targeting (SMART) technology was conducted. Mice bearing a subcutaneous colorectal CT26 tumor received three times different immunotherapy treatments (PD1 or CTLA4 or combined). On either day 7 or day 14 after the first time treatment, the PET imaging study was performed with sequentially administered TCO-modified anti-CD8 antibody and 64Cu-labeled MeTz-NOTA-RGD. However, no positive response was detected, probably due to (1) inappropriate selection of biomarkers for the SMART strategy, (2) limited TCO modification on the anti-CD8 antibody, and (3) inadequate response of the CT26 tumor to the selected immunotherapies. Therefore, the potential of applying SMART in imaging CD8 was not demonstrated in this study, and further optimization will be necessary before it can be applied in imaging CD8

    Exosome-Derived Noncoding RNAs as a Promising Treatment of Bone Regeneration

    No full text
    The reconstruction of large bone defects remains a crucial challenge in orthopedic surgery. The current treatments including autologous and allogenic bone grafting and bioactive materials have their respective drawbacks. While mesenchymal stem cell (MSC) therapy may address these limitations, growing researches have demonstrated that the effectiveness of MSC therapy depends on paracrine factors, particularly exosomes. This aroused great focus on the exosome-based cell-free therapy in the treatment of bone defects. Exosomes can transfer various cargoes, and noncoding RNAs are the most widely studied cargo through which exosomes exert their ability of osteoinduction. Here, we review the research status of the exosome-derived noncoding RNAs in bone regeneration, the potential application of exosomes, and the existing challenges

    Grain growth behavior and properties of high-entropy pseudobrookite (Mg,Co,Ni,Zn)Ti2O5 ceramics

    No full text
    It is well known that the grain size of high-entropy ceramics is quite small owing to the sluggish diffusion effect. However, abnormal grain growth often occurs in high-entropy pseudobrookite ceramics, ultimately resulting in the formation of many abnormally grown grains with a grain size as large as 50 μm. To study this phenomenon, the grain growth behavior of high-entropy pseudobrookite ceramics was systematically investigated in this paper. The results demonstrate that the starting material powders first react with each other to form a high-entropy intermediate phase and calcined TiO2 powders (TiO2-1100 °C), and then as the sintering temperature increases, the formed high-entropy intermediate phase further reacts with TiO2-1100 °C to form high-entropy pseudobrookite ceramics. Thus, in this system, in addition to the sluggish diffusion effect, the grain sizes of the high-entropy intermediate phase and TiO2-1100 °C also affect the morphology of high-entropy pseudobrookite. Compared to nanosized TiO2, micron-sized TiO2 has a lower sintering activity. Therefore, the high-entropy intermediate phases (Mg,Co,Ni,Zn)TiO3 and TiO2-1100 °C prepared with micron-sized starting materials exhibit lower grain sizes, finally resulting in the formation of high-entropy (Mg,Co,Ni,Zn)Ti2O5 with small grain sizes. Moreover, nano-indentation and thermal conductivity tests were carried out on high-entropy (Mg,Co,Ni,Zn)Ti2O5 with different morphologies. The results show that the hardness of high-entropy (Mg,Co,Ni,Zn)Ti2O5 increases from 6.05 to 9.95 GPa as the grain size increases, whereas the thermal conductivity decreases from 2.091±0.006 to 1.583±0.006 W·m−1·K−1. All these results indicate that high-entropy (Mg,Co,Ni,Zn)Ti2O5 with a small grain size is a potential material for thermal protection

    Integrative Analysis by Mendelian Randomization and Large-Scale Single-Cell Transcriptomics Reveals Causal Links between B Cell Subtypes and Diabetic Kidney Disease

    No full text
    Introduction: The increasing incidence of diabetic kidney disease (DKD) and the challenges in its management highlight the necessity for a deeper understanding of its pathogenesis. While recent studies have underscored the substantial impact of circulating immunity on the development of diabetic microvascular complications such as retinopathy and neuropathy, research on circulating immunity in DKD remains limited. Methods: This study utilized Mendelian randomization analysis to explore the potential independent causal relationships between circulating immune cells and DKD pathogenesis. Additionally, a combination of single-cell disease relevance score (scDRS) and immune cell infiltration analysis was employed to map the circulating immunity landscape in DKD patients. Results: Ten immune traits, including 5 of B cells, 2 of T cells, 2 of granulocytes, and one of monocytes, were defined to be associated with the pathogenesis of DKD. Notably, IgD-CD27-B cell Absolute Count (IVW: OR, 1.102 [1.023–1.189], p = 0.011) and IgD-CD24-B cell Absolute Count (IVW: OR, 1.106 [1.030–1.188], p = 0.005) were associated with promoting DKD pathogenesis, while CD24+CD27+B cell %B cell (IVW: OR, 0.943 [0.898–0.989], p = 0.016) demonstrated a protective effect against DKD onset. The presence of B cell-activating factor receptor (BAFF-R) on CD20−CD38−B cell (IVW: OR, 0.946 [0.904–0.989], p = 0.015) and BAFF-R on IgD-CD38+B cell (IVW: OR, 0.902 [0.834–0.975], p = 0.009) also indicated a potential role in preventing DKD. scDRS analysis revealed that two main subsets of B cells, naïve B and memory B cells, had a higher proportion of DKD-related cells or a higher scDRS score of DKD phenotype, indicating their strong association with DKD. Furthermore, immune infiltrate deconvolution analysis showed a notable decrease in the circulating memory B cells and class-switched memory B cells in DKD patients compared to those of DM patients without DKD. Conclusion: Our study revealed the causal relations between circulating immunity and DKD susceptibility, particularly highlighted the potential roles of B cell subtypes in DKD development. Further studies addressing the related mechanisms would broaden the current understanding of DKD pathogenesis
    • …
    corecore