60 research outputs found

    KIN10 promotes stomatal development through stabilization of the SPEECHLESS transcription factor

    Get PDF
    Stomata are epidermal structures that modulate gas exchanges between plants and the atmosphere. The formation of stomata is regulated by multiple developmental and environmental signals, but how these signals are coordinated to control this process remains unclear. Here, we showed that the conserved energy sensor kinase SnRK1 promotes stomatal development under short-day photoperiod or in liquid culture conditions. Mutation of KIN10, the catalytic α-subunit of SnRK1, results in the decreased stomatal index; while overexpression of KIN10 significantly induces stomatal development. KIN10 displays the cell-type-specific subcellular location pattern. The nuclear-localized KIN10 proteins are highly enriched in the stomatal lineage cells to phosphorylate and stabilize SPEECHLESS, a master regulator of stomatal formation, thereby promoting stomatal development. Our work identifies a module links connecting the energy signaling and stomatal development and reveals that multiple regulatory mechanisms are in place for SnRK1 to modulate stomatal development in response to changing environments

    Cardioprotection against Heart Failure by Shenfu Injection via TGF- β

    Get PDF
    Objective. To explore the potential cardioprotective mechanism of Shenfu injection (SFI) against heart failure (HF) by attenuating myocardial fibrosis and cardiac remodeling. Methods and Results. Four weeks after myocardial infarction (MI), adult male Sprague Dawley rats were randomized for 4-week treatment with Valsartan, SFI, or vehicle. Echocardiography and hemodynamics were applied to evaluate cardiac functions. Myocardia of coronary artery ligated (CAD) rats were observed to investigate changes in cardiac structure and function. Our findings suggest that treatment with SFI could inhibit progression of myocardial fibrosis and attenuate cardiac remodeling. In addition, SFI decreased expression of Smad2 and Smad3, while increasing the expression of Smad7 through regulation of TGF-β/Smads signaling pathway. Conclusion. Treatment with SFI in Sprague Dawley rats improves ventricular structure and function and reduces cardiac fibrosis by ameliorating TGF-β/Smads signaling pathway after ventricular remodeling

    Evaluation of the Effectiveness of Clinical Pharmacists’ Consultation in the Treatment of Infectious Diseases: A Single-Arm, Prospective Cohort Study

    Get PDF
    Background: With the implementation of Antimicrobial Stewardship Program, clinical pharmacists’ consultation (CPC) for infectious diseases (ID) is gradually adopted by many hospitals in China. We conducted a cohort study to evaluate the effectiveness of CPC in ID treatment on patient outcomes and potential determinants.Methods: Based on a registry database, a prospective cohort study was conducted in Guizhou Provincial People’s Hospital. The main exposure factor was whether clinician adopted the suggestion from clinical pharmacist. The outcome was effective response rate (ERR) of ID patients. The variables associated with the outcome (e.g., age, gender, severity of infection, liver function, and kidney function) were also prospectively recorded. A multilevel model was performed to analyze the factors related to ERR.Results: A total of 733 ID inpatients were included in the final analysis according to the predesigned inclusion and exclusion criteria. The proportion of clinical pharmacists’ suggestions adopted by clinicians and ERR were 88.13 and 69.03%, respectively. Significant data aggregation (P < 0.05) for individuals at the level of department was observed. According to the two-level variance component model, liver dysfunction (Adjusted Odds Ratio (AOR) = 0.649, 95%Credible Interval (CI): 0.432–0.976), severity of infection (AOR = 0.602, 95%CI: 0.464–0.781), and adopting the suggestion from pharmacist (AOR = 1.738, 95%CI: 1.028–2.940) had significant association with ERR.Conclusion: Our study suggests that the effect of CPC on ID treatment is significant. The policy/decision makers or hospital managers should be cognizant of the critical value of clinical pharmacists in ID treatment

    Danhong Injection Reversed Cardiac Abnormality in Brain–Heart Syndrome via Local and Remote β-Adrenergic Receptor Signaling

    Get PDF
    Ischemic brain injury impacts cardiac dysfunction depending on the part of the brain affected, with a manifestation of irregular blood pressure, arrhythmia, and heart failure. Generally called brain–heart syndrome in traditional Chinese medicine, few mechanistic understanding and treatment options are available at present. We hypothesize that considering the established efficacy for both ischemic stroke and myocardial infarction (MI), Danhong injection (DHI), a multicomponent Chinese patent medicine, may have a dual pharmacological potential for treating the brain–heart syndrome caused by cerebral ischemic stroke through its multi-targeted mechanisms. We investigated the role of DHI in the setting of brain–heart syndrome and determined the mechanism by which it regulates this process. We induced Ischemia/Reperfusion in Wistar rats and administered intravenous dose of DHI twice daily for 14 days. We assessed the neurological state, infarct volume, CT scan, arterial blood pressure, heart rhythm, and the hemodynamics. We harvested the brain and heart tissues for immunohistochemistry and western blot analyses. Our data show that DHI exerts potent anti-stroke effects (infarct volume reduction: ∗∗p < 0.01 and ∗∗∗p < 0.001 vs. vehicle. Neurological deficit correction: ∗p < 0.05 and ∗∗∗p < 0.001 vs. vehicle), and effectively reversed the abnormal arterial pressure (∗p < 0.05 vs. vehicle) and heart rhythm (∗∗p < 0.01 vs. vehicle). The phenotype of this brain–heart syndrome is strikingly similar to those of MI model. Quantitative assessment of hemodynamic in cardiac functionality revealed a positive uniformity in the PV-loop after administration with DHI and valsartan in the latter. Immunohistochemistry and western blot results showed the inhibitory effect of DHI on the β-adrenergic pathway as well as protein kinase C epsilon (PKCε) (∗∗p < 0.01 vs. model). Our data showed the underlying mechanisms of the brain–heart interaction and offer the first evidence that DHI targets the adrenergic pathway to modulate cardiac function in the setting of brain–heart syndrome. This study has made a novel discovery for proper application of the multi-target DHI and could serve as a therapeutic option in the setting of brain–heart syndrome

    Urban Renewal and Renovation of Old Buildings from the Perspective of Cultural Output - A Study on the Teaching of Graduation Project Design in Shanghai Sanda University

    No full text
    As urban renewal mode has transformed from massive demolition and reconstruction to stock improvement and upgrading, the environment design major also goes through constant changes to cope with the various problems in urban regeneration. In light of this situation, there is an urgent need to reform the teaching of environmental design courses, including teaching methods and modes. This study focuses on the teaching reform of the design of graduation projects from 2019 to 2022 to illustrate the transformation of training concepts, the teaching reform and selection of graduation projects, the research of teaching mode innovation, multiple teaching methods, various modes of presentation, and the organization and implementation of the teaching process composed of “three dimensions and four links”. The study aims to integrate the course teaching with practices, achieve cultural output and revival in the process of upgrading and renewal, and improve students’problem-solving capacity and their ability to innovate so that they can be more qualified for future jobs

    Dose-dependent effects of pentabrominated diphenyl ethers on sexual hormone and histology of male reproductive system in rats

    Get PDF
    Security is emerging as a growing concern throughout the distributed computing community. Typical solutions entail specialized infrastructure support for authentication, encryption and access control. Mobile applications executing over ad hoc wireless networks present designers with a rather distinct set of security requirements. A totally open setting and limited resources call for lightweight and highly decentralized security solutions. In this paper we propose an approach that relies on extending an existing coordination middleware for mobility (Lime). The need to continue to offer a very simple model of coordination that assures rapid software development led to limiting extensions solely to password protected tuple spaces and per tuple access control. Password distribution and security are relegated to the application realm. Host level security is ensured by the middleware design and relies on standard support provided by the Java system. Secure interactions among agents across hosts are accomplished by careful exploitation of the interceptor pattern and the use of standard encryption. The paper explains the design strategy used to add security support in Lime and its implications for the development of mobile applications over ad hoc networks
    corecore