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Abstract. Security is emerging as a growing concern throughout the distributed com-
puting community. Typical solutions entail specialized infrastructure support for au-
thentication, encryption and access control. Mobile applications executing over ad hoc
wireless networks present designers with a rather distinct set of security requirements.
A totally open setting and limited resources call for lightweight and highly decentral-
ized security solutions. In this paper we propose an approach that relies on extending
an existing coordination middleware for mobility (LIME). The need to continue to offer
a very simple model of coordination that assures rapid software development led to lim-
iting extensions solely to password protected tuple spaces and per tuple access control.
Password distribution and security are relegated to the application realm. Host level
security is ensured by the middleware design and relies on standard support provided
by the Java system. Secure interactions among agents across hosts are accomplished
by careful exploitation of the interceptor pattern and the use of standard encryption.
The paper explains the design strategy used to add security support in LIME and its
implications for the development of mobile applications over ad hoc networks.

1 Introduction

Ad hoc networks are formed when hosts equipped with wireless communication
capabilities interact with each other directly without support from any fixed
wired infrastructure. Hosts can range greatly in both computational power and
communication capabilities. Standard computers may be placed on mobile plat-
forms (e.g., cars) and may be given continuous access to a reliable power source.
Laptops and palmtops may be carried by individuals or small robots and subject
to power limitations. Small processors may be embedded in specialized devices
or integrated within miniature sensor systems. For the purpose of this paper, our
interest is in applications that execute on computing devices that are sufficiently
powerful to run Java software, are highly mobile, and do not rely in any way
on the wired infrastructure. A world in which each individual carries a PDA
but base stations are absent is a good metaphor for the setting we have in mind.
Disaster response, mine exploration, low profile military action, social gatherings



are representative application domains for our work. In all these cases network
formation is opportunistic, its structure is subject to evolution, disconnections
are a way of life, and the size of the community is constrained by the range of the
wireless transmitters. Ad hoc routing, when available, may significantly expand
the size of the community of participating hosts.

Application development targeted to such open and dynamic settings is par-
ticularly difficult and coordination methods have been proposed as a possible
software engineering solution. The basic idea is that of offering the developer
a simple application-programming interface (API) that facilitates spatial and
temporal decoupling among software components. In Linda [1], for instance, the
API consists of a small set of operations that offer content-based access to tuples
stored in a persistent global tuple space. Computation is relegated to local pro-
cessing taking place in each component with the communication mechanics being
completely hidden behind a high-level coordination model. The result is a signif-
icant reduction in the application development effort. LIME (Linda In a Mobile
Environment) [2] is a coordination model and associated middleware that sought
to extend this basic idea to mobility. In LIME, applications are constructed out
of components called agents that represent the basic unit of modularity, execu-
tion and mobility. Agents reside on hosts and can move among them as long as
connectivity is available. Agents residing on hosts within communication range
form a group. Group membership changes as communication links break down
and get reestablished. Engagement and disengagement are the terms use to refer
to joining and leaving a given group. An agent may create tuple spaces that
can be shared with other agents within the same group. Each tuple space has a
name and identically named tuple spaces belonging to agents in the same group
are shared as if they were a single global tuple space. The latter is referred to
as a federated tuple space. As groups change membership the content of each
federated tuple space changes as well, with departing agents taking their tuples
along and arriving agents contributing new tuples.

Ease of coordination within an open environment is a great asset but it must
be tempered by security concerns. Many strategies commonly used in wired net-
works become problematic in the ad hoc setting. There is no protection against
eavesdropping, there are no trusted authentication servers, there are no central-
ized databases of secure information, etc. Moreover, any proposed solution must
be sensitive to resource utilization. Lightweight solutions are preferred but they
must be able to work in settings where one cannot anticipate who will show
up when and for how long. Full transparency may be desirable but the ability
to hide security concerns from the application developer and user may not al-
ways be feasible. In this paper, we pose the question whether the coordination
strategy made available in LIME can be made secure with minimal impact on
the LIME middleware and on its fundamental coordination model. The goal is
to maintain the rapid application deployment advantage of LIME while making
available both secure and open access to the data shared through tuple spaces.

Our solution was to extend the LIME API in two important ways. First,
we offer password-protected access to tuple spaces. The sharing policy within



a group is extended to require not just the same name but protection with the
same password. Within a single group, identically named tuple spaces are fur-
ther partitioned according to their associated passwords. This is complemented
by the ability to password-protect individual tuples regardless whether they are
part of a protected or unprotected tuple space. Interestingly enough, the imple-
mentation of these two capabilities employs distinct features of the underlying
LIME system. Moreover, by exploiting the fact that LIME restricts tuple space
access to its creator agent, password usage is limited solely to tuple space cre-
ation, thus minimizing the scope of API modifications and also affording some
level of robustness in regard to possible programming errors involving incorrect
password utilization. In the final analysis, by making effective use of the exist-
ing LIME design the secure version of the system ends up to be a sandwiching
of the existing middleware between a security veneer above and an interceptor
below. The latter provides the proper encryption of messages associated with
secure tuple spaces using a protected table shared with the former. The price
we pay for achieving this level of simplicity is the need to accomplish the initial
password distribution possibly outside the application itself and the requirement
for the application to manage required password changes in response to possible
security compromises.

The remainder of the paper is structured as follows. Section 2 reviews the
LIME coordination model. This is necessary since the design relies heavily on
both technical features of LIME and on extending its semantics to security. Sec-
tion 3 presents our security extensions to the original model. Section 4 presents
the implementation strategy. Section 5 describes the test application we've de-
veloped to evaluate the security extensions we describe. Related work on secure
coordination is presented in Section 6. Conclusions appear in Section 7.

2 The Lime Coordination Model

Because this effort builds directly on LIME and exploits some of its more subtle
technical features, we start our presentation with an overview the LIME model
and illustrate it by means of a simple example involving a group of people who,
while present at the same locale, communicate with each other via a chat pro-
gram running on PDAs equipped with a wireless capability at the level of the
802.11b protocol and they do so in order not to disturb some ongoing public
deliberation.

The LiME middleware supports the development of applications exhibiting
physical mobility of hosts and logical mobility of agents. An agent is the basic
building block for the mobile application, a software component that may re-
side permanently on a host or may move from one host to another connected
host, hence the name agent. Hosts, which can move in physical space, serve as
containers for the agents and run local versions of the LIME system server, the
middleware supporting coordination in LIME. As suggested earlier, LIME extends
the coordination model of Linda in significant ways. First, the globally accessed
persistent tuple space of Linda is replaced in LIME by transient sharing of iden-



tically named tuple spaces belonging to agents that a part of the same group,
i.e., reside on hosts that are mutually accessible over the ad hoc network. Other
LIME extensions to Linda include location specific operations, transparent tuple
migration, and the ability to react to the presence or appearance of tuples within
specific transiently shared tuple spaces.

Transparent Context Maintenance. The model underlying LIME accom-
plishes the shift from a fixed global context to a dynamically changing one by
distributing the single Linda tuple space across multiple tuple spaces, each local
to an agent, and by introducing rules for transient sharing of the individual tuple
spaces based on naming and connectivity; LIME allows an agent to structure its
holdings across multiple tuple spaces each being shared only with other identi-
cally named tuple spaces local to other agents within the group. Group mem-
bership is essentially controlled by connectivity among hosts but other group
formation policies not important to this presentation play a role as well. Sharing
of multiple tuple spaces results in the formation of a virtual global data structure
called a federated tuple space. The content of the federated tuple space is the
union of the contents associated with the contributing tuple spaces. Access to
the federated tuple space is accomplished by simply accessing the API for the
local tuple space. Through sharing, local actions have global effects. Program-
ming simplicity is achieved by accessing solely local tuple spaces regardless of the
network setting. Context awareness and coordination is achieved by transparent
maintenance of a broader computational context and by transparent extension
of the effects of what otherwise appear to be local actions. The agent’s gateway
to the federated tuple space is called the interface tuple space (ITS).

Basic access to the 1TS takes place using the traditional Linda primitives (e.g.,
in, rd, out), whose semantics remain essentially unaffected. The out operation
takes a tuple t and places it into a tuple space; in takes as parameter a template
p and blocks until a tuple matching the template is written to the tuple space
at which point in returns a copy of that tuple, after removing the original from
the tuple space; rd exhibits a similar behavior but it leaves the original in the
tuple space—the details of the matching mechanism will be explained later. LIME
offers also non-blocking versions of in and rd in the form of probe variants of
the same operations (e.g., inp, rdp). In general, non-blocking operations return
a matching tuple (if one is available) and null otherwise. Both blocking and
non-blocking extensions designed to handle entire groups of tuples matching the
same template are also included in LIME.

A simple implementation of the chat program can be readily accomplished
by having one agent per PDA with each agent initially creating a single shared
tuple space called ”Chat_Room”. A message-sending request is transformed into
placing in the tuple space a tuple containing the user id, the user name, a
sequence number, and the message text. All other agents in the group gain access
to the newly generated tuple by issuing a rd operation with an appropriate
pattern. The originator of the message can remove it at some later point by
employing a removal policy based on time to live. An alternate approach might
be to implement a simple logical clock protocol through proper manipulation of



the sequence numbers. In all cases the size of the resulting chat program is very
small.

As in Linda, a tuple consists of an ordered list of fields. Each field has a type
and a value. A template is an ordered list of fields that can contain type designa-
tors (formal fields) or explicit values (actual fields). A tuple and a template are
said to match if both contain the same number of fields and each corresponding
pair of fields matches. A feature unique to LIME is the ability to specify the
matching policy on a field by field basis. Three field-level matching policies are
available: (1) Polymorphic matching requires the field in the template to be a
formal whose type is a supertype of the corresponding object in the tuple; this
yields the highest degree of flexibility, since the Java Object class works as a
wildcard. However, this opens the door for programming mistakes. (2) Exact
type matching allows the field in the template to be a formal but requires its
type to be the same as the type of the object in the corresponding tuple field. (3)
Exact value match asks the template field to provide an actual that will match
exactly the type and the value of the corresponding field in the tuple.

Controlling Context Awareness. A read-only tuple space called the
LimeSystemTupleSpace provides an agent with a view of the overall system
configuration. Its tuples contain information about the mobile agents present
in the community, physical hosts they execute on, and tuple spaces created for
coordination. Standard tuple space operations on LimeSystemTupleSpace allow
an agent to respond to the arrival and departure of other agents and hosts. If
we make the simplifying assumption that all the agents in the group are part of
the chat room, an agent can easily build a list of who is around by examining
LimeSystemTupleSpace.

Furthermore, LIME provides fine-grained control over the context on which
an agent chooses to operate by extending its operations with tuple location
parameters that define projections of the federated tuple space. LIME expresses
tuple location parameters in terms of agent identifiers and host identifiers. These
identifiers can be used both to place tuples at a particular agent location or to
restrict queries to specific agents or hosts.

Reacting to Changes in Context. Mobility entails a highly dynamic en-
vironment, where reacting to changes constitutes a major fraction of the applica-
tion design. Therefore, LIME extends the basic Linda tuple space with the notion
of reaction. A reaction R(s,p) is defined by a code fragment s that specifies the
actions to be executed when a tuple matching the template p is found in the
tuple space. After each operation on the tuple space, LIME non-deterministically
selects a reaction and compares the template p against the tuple space contents.
If a matching tuple is found, s is executed, otherwise the reaction is a skip.
This selection and execution proceeds until there are no reactions enabled, and
normal processing resumes. Thus, reactions are executed as if they belonged to
a separate reactive program which runs to fixed point after each non-reactive
statement. Blocking operations are not allowed in s, as they could prevent the
program from reaching fixed point.



This idealized perspective of reactions semantics is tempered in LIME by the
pragmatics of an effective implementation. As such, reactions in LIME come in
two forms: strong reactions and weak reactions. Strong reactions execute atom-
ically with the writing of the tuple that enables them. These reactions are not
allowed over the entire federated tuple space; they must always be restricted
to a host or agent. Otherwise, maintaining the requirements of atomicity and
serialization imposed by strong reactive statements would require a distributed
transaction encompassing multiple hosts for every tuple space operation. Lo-
cation parameters must be used to define the projection of the tuple space on
which the reaction will be installed and executed. LIME also provides the notion
of weak reaction. Processing of a weak reaction proceeds as in the case of strong
reactions, except that the execution of s does not happen atomically with the de-
tection of a tuple matching p; instead, it is guaranteed to take place eventually if
connectivity is preserved. This eliminates the need for a distributed transaction
and allows this type of reaction to be installed and to execute over the federated
tuple space.

Our earlier solution for the chat room can be simplified greatly through the
use of reactions. Each agent in the chat room can register a weak reaction for
tuples containing messages in the chat room. In doing so, when a tuple is inserted
in the tuple space all reactions fire initiating eventual delivery of a copy of the
message to the respective agents. Only after all these reactions are completed,
local processing can resume on the PDA that sent the message. By now, it is
known that the message delivery has been initiated already and the agent can
remove it safely by issuing an in operation prior to continuing its local processing.
The resulting code assumes the following general structure.

LimeTupleSpace lts = new LimeTupleSpace(” Chat_Room”);
lts.add WeakReaction(message Template, reactor);
while(true)

{

... // read message from keyboard

//place the tuple into the tuple space
lts.out(new Tuple(message_from_user));

// remove the message and discard the value returned
lts.in(message_from_user);

Each user creates a tuple space named ”Chat_Room”. Then it adds a weak
reaction to this tuple space. This reaction has a template (message Template)
that will be compared against tuples in tuple space and, if any match is found,
the reaction is fired. The parameter "reactor” is a reference to an object that



implements a special method which will be called if the reaction is triggered.
This method will receive a copy of the tuple and may send the message to the
GUIL. Here is a simple version of such a method:

public void reactsTo( Tuple t)

{
}

Software Distribution. LIME is available under a GNU’s LGPL open
source license. Source code and development notes may be obtained from lime.
sourceforge.net. Public release of LIME 2.0 is scheduled for February 2003.

print(extract(t));

3 Security Extensions

In this section we revisit LIME by examining a set of extensions required to
accomplish a smooth transition to a secure version of the model and its associated
middleware.

Password Protected Tuple Spaces. Returning to the chat room appli-
cation, it is easy to see that anyone having a PDA even if it is unaware of the
name given to the shared tuple space, can employ polymorphic matching over
LimeSystemTupleSpace to return all the information needed to create a tuple
space having the right name. One way to protect against such attacks is to
require a password to be associated with each secure tuple space:

SecureLime TupleSpace slts = new SecureLime TupleSpace(”name”, "password”);

An agent will be considered authorized if it has knowledge of both the tuple
name and its password. An entry in LimeSystemTupleSpace corresponding to
this tuple space will still exist but will not be recognizable as the password
is used to encrypt the actual name. Interestingly enough this will not per-
mit for an agent to simply read the name from LimeSystemTupleSpace and
create its own local tuple. As we will see in the implementation section, the
name of a tuple space suffers some transformations on the way from the user to
LimeSystemTupleSpace. These changes will prevent an intruder form attempt-
ing to create an unprotected tuple space by copying the encrypted name of a
tuple space from LimeSystemTupleSpace and not by generating it using the
correct clear name and password.

Secure Communication. If a tuple space operation involves a remote exe-
cution on some other host whose agent contributes to the federated tuple space,
the request will be sent across the wireless link and the results will be sent back
over insecure wired or wireless lines. Eavesdropping is made easy by the fact
that information travelling across the network consists of clear serialized Java
objects. Secure communication between hosts is achieved by encrypting the mes-
sages associated with a given tuple space using the password supplied when the



tuple space was created first (if any). The remote party is supposed to have
access to the same password since sharing of the tuple space is taking place. For
tuple spaces which are not protected, the messages will not be encrypted and
the other party will need to know only the communication protocol in order to
be able to deserialize the objects received in the request.

Tuple level access control. Even if we can now protect an entire tuple
space, restrictions on the tuple level are still desirable in many applications.The
reasons are two fold. In case of a secure tuple space shared among cooperating
agents, tuple level protection can protect inadvertent tuple removal or access.
Similarly, in an open tuple space this feature affords some level of protection
against malicious agents.

A tuple may have a password to protect the tuple from removal (hereafter
called remove-password) and a different password that protects the tuple from
reading (hereafter called read-password). If the tuple has a read-password, a
rd operation will retrieve it if it provides the same read-password or a remove-
password equal to tuple’s read-password, assuming that the fields match. This
is because an agent that has the password to remove a tuple is also entitled
to read the tuple. If a tuple has a remove-password, an in operation will have
to provide the same remove-password to match this tuple. If the tuple has no
remove-password but has a read-password, an in operation will need to provide
this password to remove the tuple. As we will see in the implementation section,
the passwords will be stored as special fields of a tuple with the matching policy
set to exact value matching. For obvious reasons, no wildcards can be allowed
in this fields’ matching. It is also forbidden for an agent to push a protected
tuple into some other’s agent local tuple space. The new owner may not have
the password to remove the tuple and will be stuck with it indefinitely.

Agentl Agent2

template

in(templ, pwd) A(r)eksult

t ]| ot

tuple RO—=T _ _ _ _
blocked

Local tuple space Local tuple space

Fig. 1. The execution of an in operation matching a Read-Only tuple. Agentl is able
to retrieve the tuple because it provides the (correct) remove-password, while Agent2
blocks because its template, even when it matches the data part of the tuple, does not
satisfy the security requirements.



rdg(template, rd_pwd)
acorrect template and password
will read all the tuples

unprotected tuples are returned

rdg(template)

I
I
I protected tuples are not matched
|

Fig. 2. The execution of an ing on a group of read-only and fully accessible tuples.

In our chat application, if two agents want to exchange private information
will need a secret key to protect the tuple space. While the authentication of the
two is outside the scope of this example, we can show how they can establish a
session key for their communication. Either one of the two agents can advertise
its public key in a public tuple space. While everybody should be able to read
this public key, the agent wouldn’t like for anybody to be able to remove it,
therefore will advertise it as read-only.

The advertisement of this public key can be done like this:

slts.out(publicKey, null, removePassword);

The publicKey parameter represents the tuple that contains the public key.
The null parameter represents the lack of the read-password, which means that
everybody is allowed to read it but the removePassword parameter indicates
that only an agent that has this password can remove the tuple, named here
”publicKey”. Once the public key advertisement is secure, the two agents can
agree on a private session key and continue their interaction on a secure channel,
protected by this later key.

Discussion. Since full agent authentication requires a trusted computing
base to certify its identity in ad hoc settings. Agents accessing the tuple space
have to be authenticated on a different basis. Knowledge of an externally supplied
password is one simple way of doing it. Furthermore, passwords are user friendly,
i.e., it is much easier to handle passwords than keys.

Password distribution is an important issue but also problematic in ad hoc
networks. We have to assume that the initial distribution is carried out external



to the application. However, using the features provided by the model, the stage
is set for password exchange between different agents. An agent (say Agentl)
can advertise its public key in a read-only tuple (i.e., a tuple with a remove-
password, which is never given away, but no read-password). Another agent (say
Agent2) can read this tuple and obtain Agent1l’s public key. The only problem
Agent2 has to solve is to make sure that what it reads is indeed Agent1’s public
key and not a public key that is set up by an man-in-the-middle attack, which
involves placing a fake key into Agentl’s tuple space. This can be easily solved.
All Agent] has to do is to attempt to remove the tuple. If the tuple is read-only it
must be the correct tuple. Agent2 reads the tuple from Agent1’s local tuple space
and, since it is a protected tuple, it couldn’t have been planted there by another
agent. Once Agent2 has Agent1’s public key they can run a protocol to establish
a secret session key. These secret key can be used to share password-protected
tuple spaces or to exchange private information via password-protected tuples.

If a password is compromised, the only way to fix the problem is to remove
the tuples protected by that password and rewrite them protected by a new
password. If the password was protecting a tuple space, all the tuples have to
be removed and rewritten in a new tuple space. Once a tuple space is created or
a tuple is written to a tuple space, the password(s) protecting them cannot be
changed anymore.

Any agent can notify the others if a password is compromised and should
be changed. Each agent can register a strong reaction looking for ’password
compromised’ announcement tuples. When an agent wants to warn the others,
all it has to do is write the warning tuple to the tuple space. Even if the attacker
is now able to remove the tuple, the strong reactions will have to fire before
the removal can complete. Thus, all interested agents can be notified. To resume
collaboration, they will need to create another safe communication environment,
i.e., to change the compromised password. There are several different ways this
can be done. One would be to have each agent interact with an ad hoc elected
leader of the group. This leader could supervise the distribution of a new session
key to all honest agents. This is a centralized approach (even though the leader is
elected on the spot and not predefined) and rather costly process of redistribution
of a new session key (the leader will have to run a session key establishment
protocol based on public key encryption with each other agent). A completely
distributed approach would be to have each agent generate the new session key
according to an algorithm known by all agents. Thus they all generate the same
new session key and are be able to resume secure communication faster, as long
as the key generation algorithms is not compromised as well.

Backward compatibility with older versions of LIME is insured by preserving
the unprotected tuples and unprotected tuple spaces. The unprotected tuple
spaces don’t require encrypted communication and they fit the communication
protocol of the tuple spaces from older versions of LIME.



4 Implementation

The security extensions introduced earlier were designed so as to have minimal
impact over the programming interface offered to the developer. The original in-
terface is still available. The extensions take password(s) as extra parameter(s)
in the calls that handle protected targets (i.e., tuple space name and tuples).
The secure inter host communication is automatically turned on by the usage
of secure tuple spaces, therefore it does not have by itself any impact on the
programmer interface. For encryption we used a variant of the 3DES private key
encryption algorithm that uses passwords instead of keys (the keys are gener-
ated internally from the provided passwords). We consider this algorithm secure
enough for our purposes. The data being encrypted represents messages passed
between hosts and not data that has to be stored safely. We also assume that
Java language’s protection mechanisms are robust enough not to allow incorrect
access to internal data of an object (e.g., a private member of an object cannot
be accessed by any other object). We do not address physical level attacks like
wireless signal jamming.

4.1 Password Protected Tuple Spaces

The name of the tuple space is the key to gaining access to the information
in that tuple space. To protect the information means to protect the name of
the tuple space. LimeSystemTupleSpace, among other information, contains tu-
ples that identify every tuple space (by name). Since the name is available in
LimeSystemTupleSpace, the first step is to make the information obtained from
LimeSystemTupleSpace unusable in its raw form. Changes are required to ensure
that extracting the name of a protected tuple space from LimeSystemTupleSpace
will no longer provide enough information for an agent to create a tuple space
with the same name and share it with other agents thus gaining unauthorized
access to its information.

To achieve this, some processing of the tuple space name will be done on
the way from the constructor call, when creating the tuple space, to the in-
ternal storage of the name inside the system. The information available in
LimeSystemTupleSpace will be the processed name of the tuple space. We make
sure this information cannot be used in its form from LimeSystemTupleSpace
and also that it cannot be generated incorrectly.

For this reason tuple spaces are split in two categories: tuple spaces that we
want to protect and tuple spaces that are freely accessible, i.e., unprotected. If
the user creates a tuple space that is intended to be secure, the user will have
to provide a password. If no password is provided the tuple space is assumed
to be unprotected. For secure tuple spaces, the password is used to encrypt the
name before marking it as a secure tuple space name and forwarding it to the
previous implementation of LIME which will use it as if it were a regular string
representing a name of a tuple space that will be used for sharing.

The interface the programmer uses to create secure tuple spaces is very simi-
lar to the interface offered by the previous version of LIME. The difference is that



tuple spaces (secure or not) are created using the SecureLimeTupleSpace class.
While the constructors still exist in their previous form, a new one was created,
with an extra parameter: the password (Figure 3). If no password is provided,
a simple, unprotected tuple space will be created, like in the previous version of
LIME.

The constructor call is the only place where the agent explicitly uses the
password. Once the agent has the handle to the tuple space, it does not need the
password anymore. The tuple space handle will enable the agent to access the
tuple space for as long as the agent has it without having to provide the password.
All methods will be invoked as before and will use the tuple space protection
password transparently to the agent, if needed. A tuple space operation can only
be called by the LIME agent that created it. When an operation is called on a
tuple space, LIME verifies that it was called by the thread representing the agent
that created it. Even if the handle of a tuple space is obtained correctly by an
agent, it cannot be transferred and used by another agent. This is why it is not
necessary to ask for the password when a tuple space operation is called.

The name of the secure tuple space is obtained from the provided name and
password. This encrypted name appears in the LimeSystemTupleSpace. The
tuple space name (encrypted name when a password is provided or the plain
clear name if the tuple space is not meant to be protected) will be prefixed by
a differentiator: letter ”U” for unencrypted or ”S” for secure tuple space. The
tuple space called "blue” is different from the tuple space called ”blue” and
protected with password "pwd” (the latter will actually have the internal name
Kpwa(blue) ). They can coexist but no sharing takes place. The prefixes ensure
that a tuple space cannot be created incorrectly. Since they are internally added,
they cannot be manipulated by agents. Reading the name of a (secure) tuple
space from LimeSystemTupleSpace will not be enough to create an insecure
tuple space with the same name. A prefix will be attached in front of whatever
the programmer provides as a tuple space name. If an attacker reads the name
of an protected tuple space from LimeSystemTupleSpace and tries to create a
tuple space with the same name, there are two ways she/he could follow. One is
to create the tuple space as an unprotected tuple space. In this case the system
will add the ”"U” prefix and will not be shared with the original tuple space. The
second attempt would be to trick the system to add the ”S” prefix. To do so
it will be necessary to create a secure tuple space. In this case the information
retrieved by the attacker from LimeSystemTupleSpace is useless since she/he
will need to provide the clear name and the correct password. There are no
”blank” passwords that can be used to encrypt a text and to yield the same text
as result. The prefixes also address the case when the result of encrypting the
clear name of a tuple space coincides with the name of an unencrypted tuple
space (before adding prefixes).

Using an old version of LIME (i.e., without the security features) will allow
to illegally create the tuple space but no interaction takes place since all the
communication with respect to a protected tuple space is encrypted.



SecureLimeTupleSpace(java.lang.String name, java.lang.String password)
— creates a new secure tuple space using the public tuple space name and the
password. This call places an entry in the SecurityTable mapping the encrypted
name to the password.

Fig. 3. The Call that Creates a Secure Tuple Space

The encrypted name of a protected tuple space and the password that pro-
tects it are important not only when the tuple space is created and shared but
also later in inter-host communication. This is why the LIME server has a Secu-
rityTable that stores entries of the form [encrypted name, password]. An entry
is added to this table every time a new secure tuple space is created. When
an operation is executed on the tuple space, if it runs on the local host of the
issuer (identifiable by location parameters that define the projection of the tuple
space) no further verification is needed. For executions of tuple space operations
that span beyond the limits of issuer’s host, the table will be used for more
verifications. See Section 4.3 for details.

This SecurityTable is a very important target that has to be protected.
Currently, only the default Java object protection mechanisms protect this table.
We could encrypt it and provide a somewhat more difficult access to it but this
would only shift the problem to protecting this password. Since this paper does
not address the Java security model, we assume this model is secure enough for
our research.

4.2 Tuple Level Protection.

To implement read-only tuples, several changes were needed to the previous
version of LIME and to Lights, the tuple space implementation that LIME uses.
Tuples are created the same way as before. However, every tuple space operation
will add to the end of the user specified fields (if any) three fields. They are in
order: the read-password, the remove-password and the name of the operation
that uses that tuple or template (e.g., "rd” for any type of read operation, ”in”
for any type of remove operation and ”out” for any type of write operation).

If either password is absent the field contains an instance of a NULL class
(created to stand for the Java null but is a serializable object). The call without
password parameters is equivalent to a call with both password parameters equal
to NULL.

When a tuple is written to the tuple space, the out method can specify both
the read-password and the remove-password to protect the tuple in the tuple
space.

To read a tuple, we have provided a rd method which takes a read-password
beside the usual template. This method will construct a template that contains
the NULL in remove-password’s position and the read-password in the right
place. For removing a tuple, the situation is similar. The in operation takes an



Its.out(ITuple tuple, char[] readPwd, char[] removePwd)
— writes a tuple to the tuple space and protects it against reading and/or removing.
Any combination of the two passwords is permitted.

Its.rd(ITuple template, char[] readPwd)
— reads a tuple from the tuple space if the tuple and the template match
(and the correct password is provided).

Its.in(ITuple template, char[] removePwd)
removes a tuple from the tuple space if the tuple and the template match
(and the correct password is provided).

Fig. 4. The tuple space interaction operations.

extra parameter, the remove-password. The read-password is filled in with the
same value since we consider that a template that is allowed to remove a tuple
should also be allowed to read the tuple. In some cases one of the two pass-
words expands in the other’s field from a semantic point of view. For example,
if a tuple has a read password but no remove-password, a template trying to
remove the tuple will need to have the read-password. Likewise, if a tuple has a
read-password and a remove-password, and the template provides the remove-
password for a read operation, access will be granted. Group operations are
implemented similarly. An outg protects each tuple written to the tuple space
with the password(s) provided (if any). The ing and rdg operations return only
the tuples that satisfy the matching criteria for both the data and security parts.

Even though the matching of the fields is carried out internally by LIME, the
password fields in particular showed that sometimes it is very useful to have the
possibility to chose the matching policy specific to a particular field. This led us
to add to LIME the ability to select among three matching rules on a field by
field basis. First, a field in a tuple may require the template to provide the exact
value of the field for a match to be declared (i.e., the template must have the
correct actual, hereafter called EXACT_VALUE match). Second, the tuple may
restrict only the type of the template field to be the exact type of it’s own field.
(i.e., the template’s field may be a formal but it must match the tuple’s field type
exactly, hereafter called EXACT_TYPE). Finally, the least constrained type of
matching is when a tuple’s field allows a wildcard in the template’s corresponding
field. For example, the Java Object object is a wildcard that will always match
under these circumstances. This type of matching takes advantage of Java’s OO
polymorphism and this is why we’ll call this policy POLY _TYPE.

When fields are added to a tuple, the type of matching can be specified
for each of them. Figure 5 shows how fields are added to tuples and how to
specify the matching policy for each of them. Constants. EXACT_VALUE, Con-
stants. EXACT_TYPE and Constants. POLY_TYPE are predefined integer con-
stants that identify the EXACT_VALUE, EXACT_TYPE, and POLY_TYPE
matching policies. If no policy is explicitly specified, POLY _TYPE is the default



policy considered. Taking advantage of these extensions, the tuple passwords are
transformed into fields subject to the EXACT_VALUE policy and added at the
end of the tuple when written to the tuple space.

Tuple t = new Tuple();
t.addActual(new Integer(1), Constants.EXACT_VALUE)
.addActual(new String(”WU"));

—— creates a tuple and adds fields it. To match this tuple, a template will need to
have an EXACT_VALUE on its first field (that is an actual of type Integer and.
value 1). Since the second field doesn’t have any matching policy specified, the
POLY_TYPE is assumed. That is any formal of type String (or a supertype)
would match the tuple.

Fig. 5. Adding Fields and Matching Policy to a Tuple

4.3 Communication Level Protection

Operations on the federated tuple space cross host boundaries. These entail
host to host communication over insecure lines. When an agent executes an
operation that spans beyond the limits of the current host, an interceptor catches
it, analyzes the tuple space that the message refers to (the name of the tuple
space is always present in the message that travels across hosts) and takes the
appropriate action (the use of the interceptor pattern [3] is natural for this case,
when we add security to a system that in its initial design did not address
this issue). It also offers a great deal of flexibility with respect to the choice of
encryption protocol. Figure 6 shows how interceptors secure the communication
between two hosts.

The interceptor checks wether the tuple space name appearing in the outgoing
message is present in the SecurityTable. If the message refers to an unprotected
tuple space (it is not in the table), the interceptor lets it pass through unchanged.
If the tuple space is a secure one, the interceptor will extract from the table the
password that corresponds to that tuple space and will use it to encrypt the
message. The interceptor creates a packet that contains the encrypted message
and the encrypted name of the tuple space the message refers to and forwards
this packet to the other involved host. On the recipient’s side, actions happen
symmetrically. Another interceptor catches the incoming message, looks up the
encrypted name of the tuple space in the local SecurityTable and if found,
uses the corresponding password to decrypt the message. The message is then
forwarded to the LimeServer. If the target tuple space is not a secure one, the
name will not be found in the SecurityTable and the message will be forwarded
unchanged to the LimeServer. The returned results are handled in the same
way.
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Fig. 6. Interceptors catch messages and encrypt them before sending and then decrypt
them upon receipt.

5 Wireless Dashboard Application

The extensions presented in this paper were first evaluated in a test application
that allows a car driving down a highway to make an electronic payment to an
approaching a tollbooth. As the car approaches the tollbooth, it discovers it,
receives the list of prices, pays by credit card and continues its journey without
stopping Figure 7 shows a screen capture of the tollbooth application GUI.

The implementation is as follows. The car has an agent specialized in auto-
matic payments (toll roads, parking, etc.). All these charge points are configured
to establish contact with vehicle agents in a predefined, unprotected tuple space,
called ”payments”. The agent in the car also has a tuple space called ” payments”.
When the car approaches the tollbooth the two establish communication and tu-
ple spaces merge based on the fact that they have the same name.

The agent in the car and the agent on the tollbooth will use the ”payments”
tuple space to establish a secret session key (noted SSK) for the purpose of
collecting the payment from the car in a secure manner. The tollbooth advertises
its public key (PK) in a read-only tuple in the unprotected ”payments” tuple
space (along with the list of prices for different car sizes, types of credit cards
accepted, and other useful information) while keeping its pair (PK ') for itself
(this will be used to decrypt incoming messages). The car reads the public key
and sends the tollbooth a tuple that contains its identifier (license plate, or VIN
number) and a secret session key, both encrypted with the tollbooth’s public
key: < PK(name, SSK) >.

Since the authentication part of the protocol is assumed (i.e., the car knows
how to read a tuple from the tollbooth. The possible vulnerability is to read a
tuple from the tollbooth, planted there by an attacker. To protect against this,
the car agent will have to verify that the tuple is read-only (i.e., by failing in an
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Fig. 7. Automatic toll payment is only one of the features offered by a wireless dash-
board application.

attempt to remove it). The reader is reminded that, if the tuple is read-only, it
could not have been placed there by anybody else since protected tuples cannot
migrate (the API offered to the programmer does not allow writing protected tu-
ples with an explicit destination; they will be placed, by default, in the producer’s
local tuple space). Another point of vulnerability is the public key encryption
algorithm. In our implementation we used Bouncy Castle’s implementation of
RSA public key encryption algorithm. Since cryptography is outside the scope
of this research, we also assume this encryption to be strong enough.

Using the name and SSK the car agent and the tollbooth agent will create
a secure communication channel, a protected tuple space, accessible only to two
of them, where the payment will take place. After sharing the protected tuple
space, the agent will send the credit card information to finish the payment,
based on the selection made by the driver from the options advertised by the
tollbooth. The transfer is done by having the tollbooth register a reaction for the
payment tuple that the car will write to the protected tuple space. The tollbooth
issues an electronic receipt in exchange. All sensitive information is handled
internally to each agent and, when sent across platforms it travels encrypted.
The tollbooth authenticates the car by accessing a trusted server through the
wired infrastructure.

Performance wise, public key based algorithms are big resource consumers.
They are computationally expensive algorithms and the car will have to pass
by the tollbooth really slowly for the entire protocol to succeed. Experimental
results showed that the protocol used to establish the private session key takes in
average 12.6 seconds and the entire payment protocol, ignoring the verification



of the credit card information, takes in average 13 seconds. For a communication
range of 25 meters, this data implies the car and the tollbooth should maintain
connectivity for 13 seconds, which implies an average speed of 13.8 km/h of
the car while passing by the tollbooth. Despite the experimental results, the
application is, however, a good example to show the model of interaction, as
long as performance issues are ignored.

6 Related Work

In an open environment such as a computer network and especially in presence of
mobile code roaming across hosts, security is an important issue. Other projects
also address this issue, trying to add different levels of protection to mobile
agent systems and tuple space coordination of mobile agents. KLAIM (A Kernel
Language for Agents Interaction and Mobility) [4] addresses the protection of
data through the use of a capability based system combined with type hierarchy
based system for access control. In Secure Spaces [5] the authors employ a finer
grained approach to tuple matching mechanisms than the original Linda model.
They go down to field level to address security. They can protect each field
individually by locking it with a password. This is somehow similar to using
exact value matching for specific fields in the matching mechanisms described in
this paper. Agents can be stopped from learning from tuples by requesting them
to provide exact information in the templates for tuple matching.

Several systems address the issue of protecting hosts from malicious agents.
The D’Agents system [6] uses public key cryptography to authenticate incoming
agents and thus increasing the security of hosts. The more difficult problem of
protecting the agent form curious hosts led to the approach of computing with
encrypted functions [7], [8]. The key idea here is that mobile agents are able
to decrypt code and data only if certain conditions are met by the computing
environment or at a specific moment.

In [9] the author proves that strong typing is an essential concept for achiev-
ing strong security properties. The access rights are stored in a typed access
rights matrix inspired by the HRU model[10]. A capability based system adapted
to distributed computing is described in [11]. In Yalta [12] clients are logically
grouped in dynamic coalitions. Yalta relies on certificates and certification au-
thorities for emission, revocation and validation of certificates which leads to
an architecture with several centralized hot points (certification authority and
certification revocation service).

Distributed approaches to trust management are described in [13], [14], and
[15]. They approach security issues in distributed computing using a centralized
trusted entity to provide credentials that delegate permissions. These approaches
are difficult to implement in ad hoc networks because in such an environment
it is almost impossible to maintain (or ensure access to) a centralized point of
access to authorize credentials.

Administrative domains [16], [17] restrict the execution environment by log-
ically dividing it into nested levels. The scope of a user’s operations can be



limited to his/her domain and the movement of running code restricted to well
determined areas.

7 Conclusions

In this paper we presented a way to add security capabilities to the LIME coor-
dination model, to better control who can do what and how with which tuples.
We have showed that simple changes can transform a coordination model in a
secure platform suited for the development of secure applications. The mecha-
nisms are general and can solve real issues in terms of secure coordination in ad
hoc networks.
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