63 research outputs found

    The metabolic cost of lowering blood pressure with hydrochlorothiazide

    Get PDF
    Abstract Background The landmark Antihypertensive and Lipid-Lowering treatment to prevent Heart Attack Trial (ALLHAT) placed a new spotlight on thiazide diuretics as the first-line therapy for hypertension. This is concerning as thiazide-diuretics may contribute to comorbidities associated with the current epidemic of obesity. Previous randomized clinical trials have linked thiazide diuretic treatment to insulin resistance, metabolic syndrome, and increased incidence of type 2 diabetes. Methods This proof of concept, longitudinal, randomized, double–blind study evaluated the effects of the angiotensin II receptor blocker Valsartan and the specific thiazide diuretic Hydrochlorothiazide (HCTZ) on hepatic triglyceride level (primary outcome), as well as triglyceride levels within other organs including the heart, skeletal muscle, and pancreas. Additionally, we evaluated whether myocardial function, insulin sensitivity, and insulin secretion were affected by these treatments. Results Hepatic TG levels increased by 57% post HCTZ treatment: ∆hTG HCTZ = 4.12% and remained unchanged post Valsartan treatment: ∆hTG V = 0.06%. The elevation of hepatic TG levels after HCTZ treatment was additionally accompanied by a reduction in insulin sensitivity: ∆SI HCTZ = -1.14. Treatment with Valsartan resulted in improved insulin sensitivity: ∆SI V = 1.24. Treatment-induced changes in hepatic TG levels and insulin sensitivity were statistically significant between groups (phTG = 0.0098 and pSI = 0.0345 respectively). Disposition index, DI, remained unchanged after HCTZ treatment: ∆DI HCTZ = -141 but it was increased by a factor of 2 after treatment with Valsartan: ∆DI V =1018). However, the change between groups was not statistically significant. Both therapies did not modify abdominal visceral and subcutaneous fat mass as well as myocardial structure and function. Additionally, myocardial, pancreatic, and skeletal muscle triglyceride deposits remained unchanged in both therapeutic arms. Conclusions Our findings are two-fold and relate to hepatic steatosis and insulin sensitivity. HCTZ treatment worsened hepatic steatosis measured as hepatic triglyceride content and reduced insulin sensitivity. Valsartan treatment did not affect hepatic triglyceride levels and improved insulin sensitivity. The results of this study reinforce the message that in patients at risk for type 2 diabetes it is particularly important to choose an antihypertensive regimen that lowers blood pressure without exacerbating patient’s metabolic profile

    Novel Trial Design: CHIEF-HF

    Get PDF
    BACKGROUND: The expense of clinical trials mandates new strategies to efficiently generate evidence and test novel therapies. In this context, we designed a decentralized, patient-centered randomized clinical trial leveraging mobile technologies, rather than in-person site visits, to test the efficacy of 12 weeks of canagliflozin for the treatment of heart failure, regardless of ejection fraction or diabetes status, on the reduction of heart failure symptoms. METHODS: One thousand nine hundred patients will be enrolled with a medical record-confirmed diagnosis of heart failure, stratified by reduced (≤40%) or preserved (\u3e40%) ejection fraction and randomized 1:1 to 100 mg daily of canagliflozin or matching placebo. The primary outcome will be the 12-week change in the total symptom score of the Kansas City Cardiomyopathy Questionnaire. Secondary outcomes will be daily step count and other scales of the Kansas City Cardiomyopathy Questionnaire. RESULTS: The trial is currently enrolling, even in the era of the coronavirus disease 2019 (COVID-19) pandemic. CONCLUSIONS: CHIEF-HF (Canagliflozin: Impact on Health Status, Quality of Life and Functional Status in Heart Failure) is deploying a novel model of conducting a decentralized, patient-centered, randomized clinical trial for a new indication for canagliflozin to improve the symptoms of patients with heart failure. It can model a new method for more cost-effectively testing the efficacy of treatments using mobile technologies with patient-reported outcomes as the primary clinical end point of the trial

    Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes

    Get PDF
    Background: Regulatory guidance specifies the need to establish cardiovascular safety of new diabetes therapies in patients with type 2 diabetes in order to rule out excess cardiovascular risk. The cardiovascular effects of semaglutide, a glucagon-like peptide 1 analogue with an extended half-life of approximately 1 week, in type 2 diabetes are unknown. Methods: We randomly assigned 3297 patients with type 2 diabetes who were on a standard-care regimen to receive once-weekly semaglutide (0.5 mg or 1.0 mg) or placebo for 104 weeks. The primary composite outcome was the first occurrence of cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke. We hypothesized that semaglutide would be noninferior to placebo for the primary outcome. The noninferiority margin was 1.8 for the upper boundary of the 95% confidence interval of the hazard ratio. Results: At baseline, 2735 of the patients (83.0%) had established cardiovascular disease, chronic kidney disease, or both. The primary outcome occurred in 108 of 1648 patients (6.6%) in the semaglutide group and in 146 of 1649 patients (8.9%) in the placebo group (hazard ratio, 0.74; 95% confidence interval [CI], 0.58 to 0.95; P<0.001 for noninferiority). Nonfatal myocardial infarction occurred in 2.9% of the patients receiving semaglutide and in 3.9% of those receiving placebo (hazard ratio, 0.74; 95% CI, 0.51 to 1.08; P=0.12); nonfatal stroke occurred in 1.6% and 2.7%, respectively (hazard ratio, 0.61; 95% CI, 0.38 to 0.99; P=0.04). Rates of death from cardiovascular causes were similar in the two groups. Rates of new or worsening nephropathy were lower in the semaglutide group, but rates of retinopathy complications (vitreous hemorrhage, blindness, or conditions requiring treatment with an intravitreal agent or photocoagulation) were significantly higher (hazard ratio, 1.76; 95% CI, 1.11 to 2.78; P=0.02). Fewer serious adverse events occurred in the semaglutide group, although more patients discontinued treatment because of adverse events, mainly gastrointestinal. Conclusions: In patients with type 2 diabetes who were at high cardiovascular risk, the rate of cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke was significantly lower among patients receiving semaglutide than among those receiving placebo, an outcome that confirmed the noninferiority of semaglutide. (Funded by Novo Nordisk; SUSTAIN-6 ClinicalTrials.gov number, NCT01720446.)Sin financiación72.406 JCR (2016) Q1, 1/155 Medicine, General & InternalUE

    Early Treatment with Basal Insulin Glargine in People with Type 2 Diabetes: Lessons from ORIGIN and Other Cardiovascular Trials

    Get PDF
    Dysglycemia results from a deficit in first-phase insulin secretion compounded by increased insulin insensitivity, exposing beta cells to chronic hyperglycemia and excessive glycemic variability. Initiation of intensive insulin therapy at diagnosis of type 2 diabetes mellitus (T2DM) to achieve normoglycemia has been shown to reverse glucotoxicity, resulting in recovery of residual beta-cell function. The United Kingdom Prospective Diabetes Study (UKPDS) 10-year post-trial follow-up reported reductions in cardiovascular outcomes and all-cause mortality in persons with T2DM who initially received intensive glucose control compared with standard therapy. In the cardiovascular outcome trial, outcome reduction with an initial glargine intervention (ORIGIN), a neutral effect on cardiovascular disease was observed in the population comprising prediabetes and T2DM. Worsening of glycemic control was prevented over the 6.7 year treatment period, with few serious hypoglycemic episodes and only moderate weight gain, with a lesser need for dual or triple oral treatment versus standard care. Several other studies have also highlighted the benefits of early insulin initiation as first-line or add-on therapy to metformin. The decision to introduce basal insulin to metformin must, however be individualized based on a risk-benefit analysis. The landmark ORIGIN trial provides many lessons relating to the concept and application of early insulin therapy for the prevention and safe and effective induction and maintenance of glycemic control in type 2 diabetes

    Plasma Metabolomic Profiles Reflective of Glucose Homeostasis in Non-Diabetic and Type 2 Diabetic Obese African-American Women

    Get PDF
    Insulin resistance progressing to type 2 diabetes mellitus (T2DM) is marked by a broad perturbation of macronutrient intermediary metabolism. Understanding the biochemical networks that underlie metabolic homeostasis and how they associate with insulin action will help unravel diabetes etiology and should foster discovery of new biomarkers of disease risk and severity. We examined differences in plasma concentrations of >350 metabolites in fasted obese T2DM vs. obese non-diabetic African-American women, and utilized principal components analysis to identify 158 metabolite components that strongly correlated with fasting HbA1c over a broad range of the latter (r = −0.631; p<0.0001). In addition to many unidentified small molecules, specific metabolites that were increased significantly in T2DM subjects included certain amino acids and their derivatives (i.e., leucine, 2-ketoisocaproate, valine, cystine, histidine), 2-hydroxybutanoate, long-chain fatty acids, and carbohydrate derivatives. Leucine and valine concentrations rose with increasing HbA1c, and significantly correlated with plasma acetylcarnitine concentrations. It is hypothesized that this reflects a close link between abnormalities in glucose homeostasis, amino acid catabolism, and efficiency of fuel combustion in the tricarboxylic acid (TCA) cycle. It is speculated that a mechanism for potential TCA cycle inefficiency concurrent with insulin resistance is “anaplerotic stress” emanating from reduced amino acid-derived carbon flux to TCA cycle intermediates, which if coupled to perturbation in cataplerosis would lead to net reduction in TCA cycle capacity relative to fuel delivery

    Structural and Functional Hierarchy in Photosynthetic Energy Conversion—from Molecules to Nanostructures

    Get PDF
    Basic principles of structural and functional requirements of photosynthetic energy conversion in hierarchically organized machineries are reviewed. Blueprints of photosynthesis, the energetic basis of virtually all life on Earth, can serve the basis for constructing artificial light energy-converting molecular devices. In photosynthetic organisms, the conversion of light energy into chemical energy takes places in highly organized fine-tunable systems with structural and functional hierarchy. The incident photons are absorbed by light-harvesting complexes, which funnel the excitation energy into reaction centre (RC) protein complexes containing redox-active chlorophyll molecules; the primary charge separations in the RCs are followed by vectorial transport of charges (electrons and protons) in the photosynthetic membrane. RCs possess properties that make their use in solar energy-converting and integrated optoelectronic systems feasible. Therefore, there is a large interest in many laboratories and in the industry toward their use in molecular devices. RCs have been bound to different carrier matrices, with their photophysical and photochemical activities largely retained in the nano-systems and with electronic connection to conducting surfaces. We show examples of RCs bound to carbon-based materials (functionalized and non-functionalized single- and multiwalled carbon nanotubes), transitional metal oxides (ITO) and conducting polymers and porous silicon and characterize their photochemical activities. Recently, we adapted several physical and chemical methods for binding RCs to different nanomaterials. It is generally found that the P(+)(Q(A)Q(B))(−) charge pair, which is formed after single saturating light excitation is stabilized after the attachment of the RCs to the nanostructures, which is followed by slow reorganization of the protein structure. Measuring the electric conductivity in a direct contact mode or in electrochemical cell indicates that there is an electronic interaction between the protein and the inorganic carrier matrices. This can be a basis of sensing element of bio-hybrid device for biosensor and/or optoelectronic applications
    corecore