404 research outputs found

    Do interactions between plant roots and the rhizosphere affect parasitoid behaviour?

    Get PDF
    Multitrophic interactions are powerful forces shaping the structure of living communities. Plants encounter a great diversity of organisms in their environment: some of these interactions are beneficial (e.g. symbiotic fungi and insect pollinators) while some are detrimental (e.g. herbivorous insects and pathogenic micro-organisms). Multitrophic interactions between below-ground and above-ground organisms are receiving increasing attention because they may influence plant defences against biotic and abiotic stresses. In this study we show that an arbuscular mycorrhizal symbiosis makes tomato plants significantly more resistant towards aphids, by enhancing both direct defences, both attractivity towards aphid parasitoids

    Dietary modifications for infantile colic

    Get PDF
    Infantile colic can be defined as periods of inconsolable, unexplained, and incessant crying in a seemingly healthy infant that, quite understandably, leads to exhausted, frustrated, and concerned parents seeking to comfort their child (Landgren 2010). The prevalence of excessive crying varies according to the definition used although, most often, it peaks during the second month of life,with a prevalence of 1.5%to 11.9%(Reijneveld 2001).Traditionally, the definition of the condition was based on the rule of three (Wessel 1954): that is, unexplained episodes of paroxysmal crying for more than three hours per day, for three days per week, for at least three weeks. More recently a new definition has been proposed. It refers to a clinical condition of fussing and crying for at least one week in an otherwise healthy infant (Hyman 2006). Colic can be graded as mild, moderate, or severe, though there is no consensus for this classification. Colic can affect up to 10% to 30% of infants worldwide (Clifford 2002; Rosen 2007)

    Automatic features detection in a fluvial environment through machine learning techniques based on uavs multispectral data

    Get PDF
    The present work aims to demonstrate how machine learning (ML) techniques can be used for automatic feature detection and extraction in fluvial environments. The use of photogrammetry and machine learning algorithms has improved the understanding of both environmental and an-thropic issues. The developed methodology was applied considering the acquisition of multiple photogrammetric images thanks to unmanned aerial vehicles (UAV) carrying multispectral cam-eras. These surveys were carried out in the Salbertrand area, along the Dora Riparia River, situated in Piedmont (Italy). The authors developed an algorithm able to identify and detect the water table contour concerning the landed areas: the automatic classification in ML found a valid identification of different patterns (water, gravel bars, vegetation, and ground classes) in specific hydraulic and geomatics conditions. Indeed, the RE+NIR data gave us a sharp rise in terms of accuracy by about 11% and 13.5% of F1-score average values in the testing point clouds compared to RGB data. The obtained results about the automatic classification led us to define a new procedure with precise validity conditions

    Rock mass characterization by UAV and close-range photogrammetry: A multiscale approach applied along the vallone dell’elva road (Italy)

    Get PDF
    Geostructural rock mass surveys and the collection of data related to discontinues provide the basis for the characterization of rock masses and the study of their stability conditions. This paper describes a multiscale approach that was carried out using both non-contact techniques and traditional support techniques to survey certain geometrical features of discontinuities, such as their orientation, spacing, and useful persistence. This information is useful in identifying the possible kinematics and stability conditions. These techniques are extremely useful in the case study of the Elva valley road (Northern Italy), in which instability phenomena are spread across 9 km in an overhanging rocky mass. A multiscale approach was applied, obtaining digital surface models (DSMs) at three different scales: large-scale DSM of the entire road, a medium-scale DSM to assess portions of the slope, and a small-scale DSM to assess single discontinuities. The georeferenced point cloud and consequent DSMs of the slopes were obtained using an unmanned aerial vehicle (UAV) and terrestrial photogrammetric technique, allowing topographic and rapid traditional geostructural surveys. This technique allowed us to take measurements along the entire road, obtaining geometrical data for the discontinuities that are statistically representative of the rock mass and useful in defining the possible kinematic mechanisms and volumes of potentially detachable blocks. The main purpose of this study was to analyse how the geostructural features of a rock mass can affect the stability slope conditions at different scales in order to identify road sectors susceptible to different potential failure mechanisms using only kinematic analysis

    hbim in a semantic 3d gis database

    Get PDF
    Abstract. This work describes the different attempts and the consequent results derived from the integration of an HBIM model into an already structured spatial database (DB) and its 3D visualisation in a GIS project.This study is connected to the European ResCult (Increasing Resilience of Cultural Heritage) project where a DB for multiscale analyses was defined. To test the methodology proposed, the case study of Santa Maria dei Miracoli church in Venice was chosen since it represents a complex architectural heritage piece in a risk zone, it has been subject to a vast restoration intervention in the recent past but a digital documentation and model concerning it was missing.The 3D model of the church was structured in Revit as a HBIM, with the association of different kind of information and data related to the architectural elements by means of 'shared parameters' and 'system families'. This procedure allows to reach an even higher Level of Detail (LOD4), but lead to some issues related to the semantic and software interoperability. To solve these problems the existing DB for the resilience of cultural heritage was extended adding a new entity representing the architectural elements designed in the BIM project.The aim of the test is to understand how the data and attributes inserted in the HBIM are converted and handled when dealing with a GIS DB, stepping from the IFC to the CityGML standard, through the FME software.</p

    AN INTEGRATED APPROACH FOR POLLUTION MONITORING: SMART ACQUIREMENT AND SMART INFORMATION

    Get PDF
    Air quality is a factor of primary importance for the quality of life. The increase of the pollutants percentage in the air can cause serious problems to the human and environmental health. For this reason it is essential to monitor its values to prevent the consequences of an excessive concentration, to reduce the pollution production or to avoid the contact with major pollutant concentration through the available tools. Some recently developed tools for the monitoring and sharing of the data in an effective system permit to manage the information in a smart way, in order to improve the knowledge of the problem and, consequently, to take preventing measures in favour of the urban air quality and human health. In this paper, the authors describe an innovative solution that implements geomatics sensors (GNSS) and pollutant measurement sensors to develop a low cost sensor for the acquisition of pollutants dynamic data using a mobile platform based on bicycles. The acquired data can be analysed to evaluate the local distribution of pollutant density and shared through web platforms that use standard protocols for an effective smart use
    • …
    corecore