11 research outputs found

    Resolving Ultraviolet–Visible Spectra for Complex Dissolved Mixtures of Multitudinous Organic Matters in Aerosols

    No full text
    Light-absorbing organic aerosols, referred to as brown carbon (BrC), play a vital role in the global climate and air quality. Due to the complexity of BrC chromophores, the identified absorbing substances in the ambient atmosphere are very limited. However, without comprehensive knowledge of the complex absorbing compounds in BrC, our understanding of its sources, formation, and evolution mechanisms remains superficial, leading to great uncertainty in climatic and atmospheric models. To address this gap, we developed a constrained non-negative matrix factorization (NMF) model to resolve the individual ultraviolet–visible spectrum for each substance in dissolved organic aerosols, with the power of ultrahigh-performance liquid chromatography-diode array detector-ultrahigh-resolution mass spectrometry (UHPLC-DAD-UHRMS). The resolved spectra were validated by selected standard substances and validation samples. Approximately 40,000 light-absorbing substances were recognized at the MS1 level. It turns out that BrC is composed of a vast number of substances rather than a few prominent chromophores in the urban atmosphere. Previous understanding of the absorbing feature of BrC based on a few identified compounds could be biased. Weak-absorbing substances missed previously play an important role in BrC absorption when they are integrated due to their overwhelming number. This model brings the property exploration of complex dissolved organic mixtures to a molecular level, laying a foundation for identifying potentially significant compositions and obtaining a comprehensive chemical picture

    Indian hedgehog mutations causing brachydactyly type A1 impair Hedgehog signal transduction at multiple levels

    No full text
    Brachydactyly type A1 (BDA1), the first recorded Mendelian autosomal dominant disorder in humans, is characterized by a shortening or absence of the middle phalanges. Heterozygous missense mutations in the Indian Hedgehog (IHH) gene have been identified as a cause of BDA1; however, the biochemical consequences of these mutations are unclear. In this paper, we analyzed three BDA1 mutations (E95K, D100E, and E131K) in the N-terminal fragment of Indian Hedgehog (IhhN). Structural analysis showed that the E95K mutation changes a negatively charged area to a positively charged area in a calcium-binding groove, and that the D100E mutation changes the local tertiary structure. Furthermore, we showed that the E95K and D100E mutations led to a temperature-sensitive and calcium-dependent instability of IhhN, which might contribute to an enhanced intracellular degradation of the mutant proteins via the lysosome. Notably, all three mutations affected Hh binding to the receptor Patched1 (PTC1), reducing its capacity to induce cellular differentiation. We propose that these are common features of the mutations that cause BDA1, affecting the Hh tertiary structure, intracellular fate, binding to the receptor/partners, and binding to extracellular components. The combination of these features alters signaling capacity and range, but the impact is likely to be variable and mutation-dependent. The potential variation in the signaling range is characterized by an enhanced interaction with heparan sulfate for IHH with the E95K mutation, but not the E131K mutation. Taken together, our results suggest that these IHH mutations affect Hh signaling at multiple levels, causing abnormal bone development and abnormal digit formation. © 2011 IBCB, SIBS, CAS All rights reserved.link_to_subscribed_fulltex
    corecore