1,004 research outputs found

    Ferroelectric Phase Transitions in Ultra-thin Films of BaTiO3

    Get PDF
    We present molecular dynamics simulations of a realistic model of an ultrathin film of BaTiO3_3 sandwiched between short-circuited electrodes to determine and understand effects of film thickness, epitaxial strain and the nature of electrodes on its ferroelectric phase transitions as a function of temperature. We determine a full epitaxial strain-temperature phase diagram in the presence of perfect electrodes. Even with the vanishing depolarization field, we find that ferroelectric phase transitions to states with in-plane and out-of-plane components of polarization exhibit dependence on thickness; it arises from the interactions of local dipoles with their electrostatic images in the presence of electrodes. Secondly, in the presence of relatively bad metal electrodes which only partly compensate the surface charges and depolarization field, a qualitatively different phase with stripe-like domains is stabilized at low temperature

    A Multiferroic Ceramic with Perovskite Structure: La0.5Bi0.5Mn0.5Fe0.5O3.09

    Full text link
    ABO3 perovskite multiferroic La0.5Bi0.5Mn0.5Fe0.5O3.09 where the B-site cations is responsible for the magnetic properties and the A-site cation with lone pair electron is responsible for the ferroelectric properties was synthesized at normal conditions. This oxide exhibits a ferromagnetic transition around 240 K with a well defined hysteresis loop, and a significant reversible remnant polarization below 67K similar to ferroelectric behavior. The magnetic interaction is interpreted by the ferromagnetic Fe3+-O-Mn3+ and antiferromagnetic Fe3+(Mn3+)-O-Fe3+(Mn3+) interactions competed each other, whereas the ferroelectricity is predominantly due to the polar nature introduced by the 6s2 lone pair of Bi3+ cationsComment: Submitted to Applied Physics Letters, 7 pages, 3 figure

    Concentration phase diagram of Ba(x)Sr(1-x)TiO3 solid solutions

    Full text link
    Method of derivation of phenomenological thermodynamic potential of solid solutions is proposed in which the interaction of the order parameters of constituents is introduced through the account of elastic strain due to misfit of the lattice parameters of the end-members. The validity of the method is demonstrated for Ba(x)Sr(1-x)TiO3 system being a typical example of ferroelectric solid solution. Its phase diagram is determined using experimental data for the coefficients in the phenomenological potentials of SrTiO3 and BaTiO3. In the phase diagram of the Ba(x)Sr(1-x)TiO3 system for small Ba concentration, there are a tricritical point and two multiphase points one of which is associated with up to 6 possible phases.Comment: 8 pages, 3 figure

    The role of DNA methylation in human pancreatic neuroendocrine tumours

    Get PDF
    Pancreatic neuroendocrine tumours (PNETs) are the second most common pancreatic tumour. However, relatively little is known about their tumourigenic drivers, other than mutations involving the multiple endocrine neoplasia 1 (MEN1), ATRX chromatin remodeler, and death domain-associated protein genes, which are found in ~40% of sporadic PNETs. PNETs have a low mutational burden, thereby suggesting that other factors likely contribute to their development, including epigenetic regulators. One such epigenetic process, DNA methylation, silences gene transcription via 5’methylcytosine (5mC), and this is usually facilitated by DNA methyltransferase enzymes at CpG-rich areas around gene promoters. However, 5’hydroxymethylcytosine, which is the first epigenetic mark during cytosine demethylation, and opposes the function of 5mC, is associated with gene transcription, although the significance of this remains unknown, as it is indistinguishable from 5mC when conventional bisulfite conversion techniques are solely used. Advances in array-based technologies have facilitated the investigation of PNET methylomes and enabled PNETs to be clustered by methylome signatures, which has assisted in prognosis and discovery of new aberrantly regulated genes contributing to tumourigenesis. This review will discuss the biology of DNA methylation, its role in PNET development, and impact on prognostication and discovery of epigenome-targeted therapies

    Optimal configuration of microstructure in ferroelectric materials by stochastic optimization

    Full text link
    An optimization procedure determining the ideal configuration at the microstructural level of ferroelectric (FE) materials is applied to maximize piezoelectricity. Piezoelectricity in ceramic FEs differ significantly from that of single crystals because of the presence of crystallites (grains) possessing crystallographic axes aligned imperfectly. The piezoelectric properties of a polycrystalline (ceramic) FE is inextricably related to the grain orientation distribution (texture). The set of combination of variables, known as solution space, which dictates the texture of a ceramic is unlimited and hence the choice of the optimal solution which maximizes the piezoelectricity is complicated. Thus a stochastic global optimization combined with homogenization is employed for the identification of the optimal granular configuration of the FE ceramic microstructure with optimum piezoelectric properties. The macroscopic equilibrium piezoelectric properties of polycrystalline FE is calculated using mathematical homogenization at each iteration step. The configuration of grains characterised by its orientations at each iteration is generated using a randomly selected set of orientation distribution parameters. Apparent enhancement of piezoelectric coefficient d33d_{33} is observed in an optimally oriented BaTiO3_3 single crystal. A configuration of crystallites, simultaneously constraining the orientation distribution of the c-axis (polar axis) while incorporating ab-plane randomness, which would multiply the overall piezoelectricity in ceramic BaTiO3_{3} is also identified. The orientation distribution of the c-axes is found to be a narrow Gaussian distribution centred around 45∘{45^\circ}. The piezoelectric coefficient in such a ceramic is found to be nearly three times as that of the single crystal.Comment: 11 pages, 7 figure

    Defects of the Crystal Structure and Jahn-Teller distortion in BiMnO3

    Full text link
    Using density-functional theory with the on-site Coulomb correction (the LDA+U method), we perform the structural optimization of BiMnO3 by starting from different experimentally reported structures. We confirm that irrespectively on the starting condition, all calculations converge to the same centrosymmetric structure, in agreement with the previous finding. Nevertheless, the structural optimization substantially reduces the Jahn-Teller (JT) distortion in the system. We attribute this fact to the strong competition of local distortions around the Mn- and Bi-sites: while the local Mn-environment experiences the JT instability, the one of the Bi-sites favours the off-centrosymmetric displacements, which involves the same oxygen atoms. The existence of the second mechanism explains the difference between BiMnO3 and more canonical JT manganites, such as LaMnO3. Finally, being motivated by experimental studies, we have investigated the formation of different types of defects and obtained that BiMnO3 (contrary to other considered systems, such as LaMnO3 and BiFeO3) can relatively easily form oxygen impurities at interstitial sites. The impurity oxygen atom tends to form a pair with the host oxygen, which explains the insulating character of the oxygen-excessive BiMnO3+x. Moreover, we found that the BiMnO3+x samples experience the "memory effect", where the optimized crystal structure strongly depends on the starting configuration. We suggest that such a memory effect may explain stability of some of the crystal structures of BiMnO3, which have been previously reported experimentally.Comment: 22 pages, 5 tables, 5 figure

    Phase stability and structural temperature dependence in sodium niobate: A high resolution powder neutron diffraction study

    Full text link
    We report investigation of structural phase transitions in technologically important material sodium niobate as a function of temperature on heating over 300-1075 K. Our high resolution powder neutron diffraction data show variety of structural phase transitions ranging from non-polar antiferrodistortive to ferroelectric and antiferroelectric in nature. Discontinuous jump in lattice parameters is found only at 633 K that indicates that the transition of orthorhombic antiferroelectric P (space group Pbcm) to R (space group Pbnm) phase is first order in nature, while other successive phase transitions are of second order. New superlattice reflections appear at 680 K (R phase) and 770 K (S phase) that could be indexed using an intermediate long-period modulated orthorhombic structure whose lattice parameter along direction is 3 and 6 times that of the CaTiO3-like Pbnm structure respectively. The correlation of superlattice reflections with the phonon instability is discussed. The critical exponent ({\beta}) for the second order tetragonal to cubic phase transition at 950 K, corresponds to a value {\beta}≈1/3\approx 1/3, as obtained from the temperature variation of order parameters (tilt angle and intensity of superlattice reflections). It is argued that this exponent is due to a second order phase transition close to a tricritical point. Based on our detailed temperature dependent neutron diffraction studies, the phase diagram of sodium niobate is presented that resolves existing ambiguities in the literature.Comment: 21 Pages, 8 Figure

    Genetic background influences tumour development in heterozygous Men1 knockout mice

    Get PDF
    Multiple endocrine neoplasia type 1 (MEN1), an autosomal dominant disorder caused by MEN1 germline mutations, is characterised by parathyroid, pancreatic and pituitary tumours. MEN1 mutations also cause familial isolated primary hyperparathyroidism (FIHP), a milder condition causing hyperparathyroidism only. Identical mutations can cause either MEN1 or FIHP in different families, thereby implicating a role for genetic modifiers in altering phenotypic expression of tumours. We therefore investigated the effects of genetic background and potential for genetic modifiers on tumour development in adult Men1+/- mice, which develop tumours of the parathyroids, pancreatic islets, anterior pituitary, adrenal cortex and gonads, that had been backcrossed to generate C57BL/6 and 129S6/SvEv congenic strains. A total of 275 Men1+/- mice, aged 5–26 months were macroscopically studied, and this revealed that genetic background significantly influenced the development of pituitary, adrenal and ovarian tumours, which occurred in mice over 12 months of age and more frequently in C57BL/6 females, 129S6/SvEv males and 129S6/SvEv females, respectively. Moreover, pituitary and adrenal tumours developed earlier, in C57BL/6 males and 129S6/SvEv females, respectively, and pancreatic and testicular tumours developed earlier in 129S6/SvEv males. Furthermore, glucagon-positive staining pancreatic tumours occurred more frequently in 129S6/SvEv Men1+/- mice. Whole genome sequence analysis of 129S6/SvEv and C57BL/6 Men1+/- mice revealed >54,000 different variants in >300 genes. These included, Coq7, Dmpk, Ccne2, Kras, Wnt2b, Il3ra and Tnfrsf10a, and qRT-PCR analysis revealed that Kras was significantly higher in pituitaries of male 129S6/SvEv mice. Thus, our results demonstrate that Kras and other genes could represent possible genetic modifiers of Men1
    • …
    corecore