We present molecular dynamics simulations of a realistic model of an
ultrathin film of BaTiO3 sandwiched between short-circuited electrodes to
determine and understand effects of film thickness, epitaxial strain and the
nature of electrodes on its ferroelectric phase transitions as a function of
temperature. We determine a full epitaxial strain-temperature phase diagram in
the presence of perfect electrodes. Even with the vanishing depolarization
field, we find that ferroelectric phase transitions to states with in-plane and
out-of-plane components of polarization exhibit dependence on thickness; it
arises from the interactions of local dipoles with their electrostatic images
in the presence of electrodes. Secondly, in the presence of relatively bad
metal electrodes which only partly compensate the surface charges and
depolarization field, a qualitatively different phase with stripe-like domains
is stabilized at low temperature