996 research outputs found
Pressure-Induced Anomalous Phase Transitions and Colossal Enhancement of Piezoelectricity in PbTiO
We find an unexpected tetragonal-to-monoclinic-to-rhombohedral-to-cubic phase
transition sequence induced by pressure, and a morphotropic phase boundary in a
pure compound using first-principles calculations. Huge dielectric and
piezoelectric coupling constants occur in the transition regions, comparable to
those observed in the new complex single-crystal solid-solution piezoelectrics
such as Pb(MgNb)O-PbTiO, which are expected to
revolutionize electromechanical applications. Our results show that
morphotropic phase boundaries and giant piezoelectric effects do not require
intrinsic disorder, and open the possibility of studying this effect in simple
systems.Comment: 4 pages, to appear in Phys. Rev. Let
CaCu_3Ti_4O_12/CaTiO_3 Composite Dielectrics: A Ba/Pb-free Ceramics with High Dielectric Constants
We have measured dielectric properties of CaCuTiO
( = 0, 0.1, 0.5, 1, 1.5, 2, 2.9 and 3), and have found that
CaCuTiO (a composite of CaCuTiO and
CaTiO) exhibits a high dielectric constant of 1800 with a low dissipation
factor of 0.02 below 100 kHz from 220 to 300 K. These are comparable to (or
even better than) those of the Pb/Ba-based ceramics, which could be attributed
to a barrier layer of CaTiO on the surface of the CaCuTiO
grains. The composite dielectric ceramics reported here are environmentally
benign as they do not contain Ba/Pb.Comment: 4 pages, 4 figures, Appl. Phys. Lett. (scheduled on July 25, 2005
Ferroelectric Phase Transitions in Ultra-thin Films of BaTiO3
We present molecular dynamics simulations of a realistic model of an
ultrathin film of BaTiO sandwiched between short-circuited electrodes to
determine and understand effects of film thickness, epitaxial strain and the
nature of electrodes on its ferroelectric phase transitions as a function of
temperature. We determine a full epitaxial strain-temperature phase diagram in
the presence of perfect electrodes. Even with the vanishing depolarization
field, we find that ferroelectric phase transitions to states with in-plane and
out-of-plane components of polarization exhibit dependence on thickness; it
arises from the interactions of local dipoles with their electrostatic images
in the presence of electrodes. Secondly, in the presence of relatively bad
metal electrodes which only partly compensate the surface charges and
depolarization field, a qualitatively different phase with stripe-like domains
is stabilized at low temperature
Phase diagram of Pb(Zr,Ti)O3 solid solutions from first principles
A first-principles-derived scheme, that incorporates ferroelectric and
antiferrodistortive degrees of freedom, is developed to study
finite-temperature properties of PbZr1-xTixO3 solid solutions near its
morphotropic phase boundary. The use of this numerical technique (i) resolves
controversies about the monoclinic ground-state for some Ti compositions, (ii)
leads to the discovery of an overlooked phase, and (iii) yields three
multiphase points, that are each associated with four phases. Additional
neutron diffraction measurements strongly support some of these predictions.Comment: 10 pages, 2 figure
Optimal configuration of microstructure in ferroelectric materials by stochastic optimization
An optimization procedure determining the ideal configuration at the
microstructural level of ferroelectric (FE) materials is applied to maximize
piezoelectricity. Piezoelectricity in ceramic FEs differ significantly from
that of single crystals because of the presence of crystallites (grains)
possessing crystallographic axes aligned imperfectly. The piezoelectric
properties of a polycrystalline (ceramic) FE is inextricably related to the
grain orientation distribution (texture). The set of combination of variables,
known as solution space, which dictates the texture of a ceramic is unlimited
and hence the choice of the optimal solution which maximizes the
piezoelectricity is complicated. Thus a stochastic global optimization combined
with homogenization is employed for the identification of the optimal granular
configuration of the FE ceramic microstructure with optimum piezoelectric
properties. The macroscopic equilibrium piezoelectric properties of
polycrystalline FE is calculated using mathematical homogenization at each
iteration step. The configuration of grains characterised by its orientations
at each iteration is generated using a randomly selected set of orientation
distribution parameters. Apparent enhancement of piezoelectric coefficient
is observed in an optimally oriented BaTiO single crystal. A
configuration of crystallites, simultaneously constraining the orientation
distribution of the c-axis (polar axis) while incorporating ab-plane
randomness, which would multiply the overall piezoelectricity in ceramic
BaTiO is also identified. The orientation distribution of the c-axes is
found to be a narrow Gaussian distribution centred around . The
piezoelectric coefficient in such a ceramic is found to be nearly three times
as that of the single crystal.Comment: 11 pages, 7 figure
Low-temperature phase transformations of PZT in the morphotropic phase-boundary region
We present anelastic and dielectric spectroscopy measurements of
PbZr(1-x)Ti(x)O(3) with 0.455 < x < 0.53, which provide new information on the
low temperature phase transitions. The tetragonal-to-monoclinic transformation
is first-order for x < 0.48 and causes a softening of the polycrystal Young's
modulus whose amplitude may exceed the one at the cubic-to-tetragonal
transformation; this is explainable in terms of linear coupling between shear
strain components and tilting angle of polarization in the monoclinic phase.
The transition involving rotations of the octahedra below 200 K is visible both
in the dielectric and anelastic losses, and it extends within the tetragonal
phase, as predicted by recent first-principle calculations.Comment: 4 pages, 4 figure
Domain Size Dependence of Piezoelectric Properties of Ferroelectrics
The domain size dependence of piezoelectric properties of ferroelectrics is
investigated using a continuum Ginzburg-Landau model that incorporates the
long-range elastic and electrostatic interactions. Microstructures with desired
domain sizes are created by quenching from the paraelectric phase by biasing
the initial conditions. Three different two-dimensional microstructures with
different sizes of the domains are simulated. An electric field is
applied along the polar as well as non-polar directions and the piezoelectric
response is simulated as a function of domain size for both cases. The
simulations show that the piezoelectric coefficients are enhanced by reducing
the domain size, consistent with recent experimental results of Wada and
Tsurumi (Brit. Ceram. Trans. {\bf 103}, 93, 2004) on domain engineered
Comment: submitted to Physical Review
Phase stability and structural temperature dependence in sodium niobate: A high resolution powder neutron diffraction study
We report investigation of structural phase transitions in technologically
important material sodium niobate as a function of temperature on heating over
300-1075 K. Our high resolution powder neutron diffraction data show variety of
structural phase transitions ranging from non-polar antiferrodistortive to
ferroelectric and antiferroelectric in nature. Discontinuous jump in lattice
parameters is found only at 633 K that indicates that the transition of
orthorhombic antiferroelectric P (space group Pbcm) to R (space group Pbnm)
phase is first order in nature, while other successive phase transitions are of
second order. New superlattice reflections appear at 680 K (R phase) and 770 K
(S phase) that could be indexed using an intermediate long-period modulated
orthorhombic structure whose lattice parameter along direction is 3 and 6
times that of the CaTiO3-like Pbnm structure respectively. The correlation of
superlattice reflections with the phonon instability is discussed. The critical
exponent ({\beta}) for the second order tetragonal to cubic phase transition at
950 K, corresponds to a value {\beta}, as obtained from the
temperature variation of order parameters (tilt angle and intensity of
superlattice reflections). It is argued that this exponent is due to a second
order phase transition close to a tricritical point. Based on our detailed
temperature dependent neutron diffraction studies, the phase diagram of sodium
niobate is presented that resolves existing ambiguities in the literature.Comment: 21 Pages, 8 Figure
Metal-Ferroelectric-Metal heterostructures with Schottky contacts I. Influence of the ferroelectric properties
A model for Metal-Ferroelectric-Metal structures with Schottky contacts is
proposed. The model adapts the general theories of metal-semiconductor
rectifying contacts for the particular case of metal-ferroelectric contact by
introducing: the ferroelectric polarization as a sheet of surface charge
located at a finite distance from the electrode interface; a deep trapping
level of high concentration; the static and dynamic values of the dielectric
constant. Consequences of the proposed model on relevant quantities of the
Schottky contact such as built-in voltage, charge density and depletion width,
as well as on the interpretation of the current-voltage and capacitance-voltage
characteristics are discussed in detail.Comment: 14 pages with 4 figures, manuscript under revision at Journal of
Applied Physics for more than 1 year (submitted May 2004, first revision
September 2004, second revision May 2005
- …