15 research outputs found
Proof of concept for wind turbine wake investigations with the RPAS SUMO
The Small Unmanned Meteorological Observer (SUMO) has been operated in the vicinity of five research turbines of the Energy Research Centre of the Netherlands (ECN) at the test site Wieringermeer. The intention of the campaign was to proof the capability of the system for wind turbine wake investigations also for situations above rated wind speed. In rather high wind conditions of 15-20 msâ1 on May 10, 2014, the system showed a satisfying in-flight behavior and performed five racetrack flights. The racetrack patterns flown parallel to the row of the five turbines (four flights downstream the turbine row, one upstream) enable the characterization and investigation of the strength, i.e. the reduction in the mean wind, and structure, i.e. the horizontal extension and turbulent kinetic energy (TKE) distribution of single turbine wakes.publishedVersio
Characterization of the SUMO Turbulence Measurement System for Wind Turbine Wake Assessment
The remotely piloted aircraft system (RPAS) SUMO (Small Unmanned Meteorological Observer) has been equipped with a miniaturized 5-hole probe sensor system for measurement of the 3-dimensional flow vector with a temporal resolution of 100 Hz. Due to its’ weight and size this system is particularly well suited for operations in the vicinity of wind turbines. To qualify for full scale measurements in turbine wakes the system has been characterized by several laboratory and field tests described in this study. A wind tunnel test against a hot-wire anemometer shows the capability of the 5-hole probe to react to turbulence in the same manner as the hot-wire system. The resulting spectra from the two platforms show in general good agreement for both laminar and turbulent flows. The 5-hole probe system is able to resolve turbulence up to frequencies around 20 − 30 Hz when using a tubing length of 15 cm between the probe and the pressure transducers. In addition, an environmental parallel test against to two sonic anemometers mounted on the roof-top of a car was performed at Bergen airport Flesland. Despite several issues with the self-made and low-cost experimental setup, important system characteristics could be tested and verified. In particular the velocity spectral components of the sonic anemometer system and the 5-hole probe are in close resemblance to each other. This is at least a strong indication that the 5-hole probe is suitable for atmospheric turbulence measurements onboard the RPAS SUMO platform
Analyse av klimautvikling i kyst- og innlandsregionen i Rogaland â temperatur, nedbĂžr og vind
Rogaland fylkeskommune Þnsket Ä fÄ utredet konsekvenser av klimaendringer pÄ natur og samfunn i Rogaland med fokus pÄ utfordringer, muligheter og prioriteringer. Vestlandsforskning leder prosjektet og det ble inngÄtt avtale med Vestlandsforskning om Ä gjennomfÞre en utredning pÄ del 3 i prosjektet, som har resultert i den foreliggende rapporten. Arbeidet er utfÞrt som et samarbeid mellom NORCE og Meteorologisk Institutt
Exploring the potential of the RPA system SUMO for multipurpose boundary-layer missions during the BLLAST campaign
In June and July 2011 the RPAS (Remotely Piloted Aircraft System) SUMO (Small Unmanned Meteorological Observer) performed a total number of 299 scientific flights during the BLLAST (Boundary Layer Late Afternoon and Sunset Turbulence) campaign in southern France. Three different types of missions were performed: vertical profiling of the mean meteorological parameters (temperature, humidity and wind), horizontal surveys of the surface temperature and horizontal transects for the estimation of turbulence. The manuscript provides an introduction to the corresponding SUMO operations, including regulatory issues and the coordination of manned and unmanned airborne operations for boundary-layer research that have been pioneered during the BLLAST campaign. The main purpose of the SUMO flight strategy was atmospheric profiling at high temporal resolution. A total of 168 profile flights were performed during the campaign with typically more than 10 flights per Intensive Observational Period (IOP) day. The collected data allow for a detailed study of boundary-layer structure and dynamics and will be used for further analysis, e.g. the determination of profiles of sensible and latent heat fluxes. First, tests of a corresponding method have shown very promising results and have provided surface-flux values in close agreement with those from ground-based eddy-covariance measurements. In addition, 74 horizontal surveys of the IR emission of the surface were performed at altitudes of around 65âŻm. Each of those surveys covers a typical area of around 1âŻkm2 and allows for an estimation of the surface-temperature variability, important information for the assessment of the heterogeneity of the surface forcing as a function of soil and vegetation properties. The comparison with other surface-temperature measurements shows that the raw data of the airborne and ground observations can differ considerably, but that even a very simple multiple regression method can reduce those differences to a large degree. Finally, 49 flight missions for the measurement of velocity variance have been realized during the BLLAST campaign. For that, SUMO has been equipped with a 5-hole probe (5HP) sensor for the determination of the flow vector at 100âŻHz. In particular, for this application there is still need for further improvement, both with respect to the aircraft and sensor hard- and software, and the algorithms and methods for data analysis and interpretation. Nevertheless, the SUMO operations during the BLLAST campaign have shown the vast potential of small and lightweight RPA systems with low infrastructural demand for atmospheric boundary-layer research
Analyse av klimautvikling i kyst- og innlandsregionen i Rogaland â temperatur, nedbĂžr og vind
Rogaland fylkeskommune Þnsket Ä fÄ utredet konsekvenser av klimaendringer pÄ natur og samfunn i Rogaland med fokus pÄ utfordringer, muligheter og prioriteringer. Vestlandsforskning leder prosjektet og det ble inngÄtt avtale med Vestlandsforskning om Ä gjennomfÞre en utredning pÄ del 3 i prosjektet, som har resultert i den foreliggende rapporten. Arbeidet er utfÞrt som et samarbeid mellom NORCE og Meteorologisk Institutt.publishedVersio
Proof of concept for wind turbine wake investigations with the RPAS SUMO
The Small Unmanned Meteorological Observer (SUMO) has been operated in the vicinity of five research turbines of the Energy Research Centre of the Netherlands (ECN) at the test site Wieringermeer. The intention of the campaign was to proof the capability of the system for wind turbine wake investigations also for situations above rated wind speed. In rather high wind conditions of 15-20 msâ1 on May 10, 2014, the system showed a satisfying in-flight behavior and performed five racetrack flights. The racetrack patterns flown parallel to the row of the five turbines (four flights downstream the turbine row, one upstream) enable the characterization and investigation of the strength, i.e. the reduction in the mean wind, and structure, i.e. the horizontal extension and turbulent kinetic energy (TKE) distribution of single turbine wakes
Proof of concept for turbulence measurements with the RPAS SUMO during the BLLAST campaign
The micro-RPAS (remotely piloted aircraft system) SUMO (Small Unmanned Meteorological Observer) equipped with a five-hole-probe (5HP) system for turbulent flow measurements was operated in 49 flight missions during the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign in 2011. Based on data sets from these flights, we investigate the potential and limitations of airborne velocity variance and TKE (turbulent kinetic energy) estimations by an RPAS with a take-off weight below 1âŻkg. The integration of the turbulence probe in the SUMO system was still in an early prototype stage during this campaign, and therefore extensive post-processing of the data was required. In order to be able to calculate the three-dimensional wind vector, flow probe measurements were first synchronized with the autopilot's attitude and velocity data. Clearly visible oscillations were detected in the resulting vertical velocity, w, even after correcting for the aircraft motion. The oscillations in w were identified as the result of an internal time shift between the inertial measurement unit (IMU) and the GPS sensors, leading to insufficient motion correction, especially for the vertical wind component, causing large values of Ïw. Shifting the IMU 1â1.5âŻs forward in time with respect to the GPS yields a minimum for Ïw and maximum covariance between the IMU pitch angle and the GPS climb angle. The SUMO data show a good agreement to sonic anemometer data from a 60âŻm tower for Ïu, but show slightly higher values for Ïv and Ïw. Vertical TKE profiles, obtained from consecutive flight legs at different altitudes, show reasonable results, both with respect to the overall TKE level and the temporal variation. A thorough discussion of the methods used and the identified uncertainties and limitations of the system for turbulence measurements is included and should help the developers and users of other systems with similar problems
Potential and Limitations in Estimating Sensible-Heat-Flux Profiles from Consecutive Temperature Profiles Using Remotely-Piloted Aircraft Systems
International audienceAbstract Profiles of the sensible heat flux are key to understanding atmospheric-boundary-layer (ABL) structure and development. Based on temperature profiling by a remotely-piloted aircraft system (RPAS), the Small Unmanned Meteorological Observer (SUMO) platform, during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign, 108 heat-flux profiles are estimated using a simplified version of the prognostic equation for potential temperature Ξ that relates the tendency in Ξ to the flux divergence over the time span between two consecutive flights. We validate for the first time RPAS-based heat-flux profiles against a network of 12 ground-based eddy-covariance stations (2â60 m above ground), in addition to a comparison with fluxes from a manned aircraft and a tethered balloon, enabling the detailed investigation of the potential and limitations related to this technique for obtaining fluxes from RPAS platforms. We find that appropriate treatment of horizontal advection is crucial for obtaining realistic flux values, and present correction methods specific to the state of the ABL. Advection from a mesoscale model is also tested as another correction method. The SUMO heat-flux estimates with appropriate corrections compare well with the reference measurements, with differences in the performance depending on the time of day, since the evening period shows the best results (94 % within the spread of ground stations), and the afternoon period shows the poorest results (63 % within the spread). The diurnal cycle of the heat flux is captured by the SUMO platform for several days, with the flux values from the manned aircraft and tethered balloon coinciding well with those from the SUMO platform
Potential and limitations in estimating sensible-heat-flux profiles from consecutive temperature profiles using remotely-piloted aircraft systems
Profiles of the sensible heat flux are key to understanding atmospheric-boundary-layer (ABL) structure and development. Based on temperature profiling by a remotely-piloted aircraft system (RPAS), the Small Unmanned Meteorological Observer (SUMO) platform, during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign, 108 heat-flux profiles are estimated using a simplified version of the prognostic equation for potential temperature Ξ that relates the tendency in Ξ to the flux divergence over the time span between two consecutive flights. We validate for the first time RPAS-based heat-flux profiles against a network of 12 ground-based eddy-covariance stations (2â60 m above ground), in addition to a comparison with fluxes from a manned aircraft and a tethered balloon, enabling the detailed investigation of the potential and limitations related to this technique for obtaining fluxes from RPAS platforms. We find that appropriate treatment of horizontal advection is crucial for obtaining realistic flux values, and present correction methods specific to the state of the ABL. Advection from a mesoscale model is also tested as another correction method. The SUMO heat-flux estimates with appropriate corrections compare well with the reference measurements, with differences in the performance depending on the time of day, since the evening period shows the best results (94% within the spread of ground stations), and the afternoon period shows the poorest results (63% within the spread). The diurnal cycle of the heat flux is captured by the SUMO platform for several days, with the flux values from the manned aircraft and tethered balloon coinciding well with those from the SUMO platform
Potential and limitations in estimating sensible-heat-flux profiles from consecutive temperature profiles using remotely-piloted aircraft systems
Profiles of the sensible heat flux are key to understanding atmospheric-boundary-layer (ABL) structure and development. Based on temperature profiling by a remotely-piloted aircraft system (RPAS), the Small Unmanned Meteorological Observer (SUMO) platform, during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign, 108 heat-flux profiles are estimated using a simplified version of the prognostic equation for potential temperature Ξ that relates the tendency in Ξ to the flux divergence over the time span between two consecutive flights. We validate for the first time RPAS-based heat-flux profiles against a network of 12 ground-based eddy-covariance stations (2â60 m above ground), in addition to a comparison with fluxes from a manned aircraft and a tethered balloon, enabling the detailed investigation of the potential and limitations related to this technique for obtaining fluxes from RPAS platforms. We find that appropriate treatment of horizontal advection is crucial for obtaining realistic flux values, and present correction methods specific to the state of the ABL. Advection from a mesoscale model is also tested as another correction method. The SUMO heat-flux estimates with appropriate corrections compare well with the reference measurements, with differences in the performance depending on the time of day, since the evening period shows the best results (94% within the spread of ground stations), and the afternoon period shows the poorest results (63% within the spread). The diurnal cycle of the heat flux is captured by the SUMO platform for several days, with the flux values from the manned aircraft and tethered balloon coinciding well with those from the SUMO platform