2,846 research outputs found

    How (Not) to Palatini

    Full text link
    We revisit the problem of defining non-minimal gravity in the first order formalism. Specializing to scalar-tensor theories, which may be disguised as `higher-derivative' models with the gravitational Lagrangians that depend only on the Ricci scalar, we show how to recast these theories as Palatini-like gravities. The correct formulation utilizes the Lagrange multiplier method, which preserves the canonical structure of the theory, and yields the conventional metric scalar-tensor gravity. We explain the discrepancies between the na\"ive Palatini and the Lagrange multiplier approach, showing that the na\"ive Palatini approach really swaps the theory for another. The differences disappear only in the limit of ordinary General Relativity, where an accidental redundancy ensures that the na\"ive Palatini works there. We outline the correct decoupling limits and the strong coupling regimes. As a corollary we find that the so-called `Modified Source Gravity' models suffer from strong coupling problems at very low scales, and hence cannot be a realistic approximation of our universe. We also comment on a method to decouple the extra scalar using the chameleon mechanism.Comment: 18 pages, LaTeX; added references and minor improvements in sec

    Data report for the Siple Coast (Antarctica) project

    Get PDF
    This report presents data collected during three field seasons of glaciological studies in the Antarctica and describes the methods employed. The region investigated covers the mouths of Ice Streams B and C (the Siple Coast) and Crary Ice Rise on the Ross Ice Shelf. Measurements included in the report are as follows: surface velocity and deformation from repeated satellite geoceiver positions; surface topography from optical levelling; radar sounding of ice thickness; accumulation rates; near-surface densities and temperature profiles; and mapping from aerial photography

    Quantization of the First-Order Two-Dimensional Einstein-Hilbert Action

    Full text link
    A canonical analysis of the first-order two-dimensional Einstein-Hilbert action has shown it to have no physical degrees of freedom and to possess an unusual gauge symmetry with a symmetric field ΟΌΜ\xi_{\mu\nu} acting as a gauge function. Some consequences of this symmetry are explored. The action is quantized and it is shown that all loop diagrams beyond one-loop order vanish. Furthermore, explicit calculation of the one-loop two-point function shows that it too vanishes, with the contribution of the ghost loop cancelling that of the ``graviton'' loop

    Relating Green-Schwarz and Extended Pure Spinor Formalisms by Similarity Transformation

    Full text link
    In order to gain deeper understanding of pure-spinor-based formalisms of superstring, an explicit similarity transformation is constructed which provides operator mapping between the light-cone Green-Schwarz (LCGS) formalism and the extended pure spinor (EPS) formalism, a recently proposed generalization of the Berkovits' formalism in an enlarged space. By applying a systematic procedure developed in our previous work, we first construct an analogous mapping in the bosonic string relating the BRST and the light-cone formulations. This provides sufficient insights and allows us to construct the desired mapping in the more intricate case of superstring as well. The success of the construction owes much to the enlarged field space where pure spinor constraints are removed and to the existence of the ``B-ghost'' in the EPS formalism.Comment: 37pages, no figur

    Fundamental Strings in Open String Theory at the Tachyonic Vacuum

    Get PDF
    We show that the world-volume theory on a D-p-brane at the tachyonic vacuum has solitonic string solutions whose dynamics is governed by the Nambu-Goto action of a string moving in (25+1) dimensional space-time. This provides strong evidence for the conjecture that at this vacuum the full (25+1) dimensional Poincare invariance is restored. We also use this result to argue that the open string field theory at the tachyonic vacuum must contain closed string excitations.Comment: LaTeX file, 16 pages, references and clarification adde

    Twistor theory of hyper-K{\"a}hler metrics with hidden symmetries

    Full text link
    We briefly review the hierarchy for the hyper-K\"ahler equations and define a notion of symmetry for solutions of this hierarchy. A four-dimensional hyper-K\"ahler metric admits a hidden symmetry if it embeds into a hierarchy with a symmetry. It is shown that a hyper-K\"ahler metric admits a hidden symmetry if it admits a certain Killing spinor. We show that if the hidden symmetry is tri-holomorphic, then this is equivalent to requiring symmetry along a higher time and the hidden symmetry determines a `twistor group' action as introduced by Bielawski \cite{B00}. This leads to a construction for the solution to the hierarchy in terms of linear equations and variants of the generalised Legendre transform for the hyper-K\"ahler metric itself given by Ivanov & Rocek \cite{IR96}. We show that the ALE spaces are examples of hyper-K\"ahler metrics admitting three tri-holomorphic Killing spinors. These metrics are in this sense analogous to the 'finite gap' solutions in soliton theory. Finally we extend the concept of a hierarchy from that of \cite{DM00} for the four-dimensional hyper-K\"ahler equations to a generalisation of the conformal anti-self-duality equations and briefly discuss hidden symmetries for these equations.Comment: Final version. To appear in the August 2003 special issue of JMP on `Integrability, Topological Solitons, and Beyond
    • 

    corecore