633 research outputs found
Dielectric and thermal relaxation in the energy landscape
We derive an energy landscape interpretation of dielectric relaxation times
in undercooled liquids, comparing it to the traditional Debye and
Gemant-DiMarzio-Bishop pictures. The interaction between different local
structural rearrangements in the energy landscape explains qualitatively the
recently observed splitting of the flow process into an initial and a final
stage. The initial mechanical relaxation stage is attributed to hopping
processes, the final thermal or structural relaxation stage to the decay of the
local double-well potentials. The energy landscape concept provides an
explanation for the equality of thermal and dielectric relaxation times. The
equality itself is once more demonstrated on the basis of literature data for
salol.Comment: 7 pages, 3 figures, 41 references, Workshop Disordered Systems,
Molveno 2006, submitted to Philosophical Magazin
Evaluating the potential for the environmentally sustainable control of foot and mouth disease in Sub-Saharan Africa
Strategies to control transboundary diseases have in the past generated unintended negative consequences for both the environment and local human populations. Integrating perspectives from across disciplines, including livestock, veterinary and conservation sectors, is necessary for identifying disease control strategies that optimise environmental goods and services at the wildlife-livestock interface. Prompted by the recent development of a global strategy for the control and elimination of foot-and-mouth disease (FMD), this paper seeks insight into the consequences of, and rational options for potential FMD control measures in relation to environmental, conservation and human poverty considerations in Africa. We suggest a more environmentally nuanced process of FMD control that safe-guards the integrity of wild populations and the ecosystem dynamics on which human livelihoods depend while simultaneously improving socio-economic conditions of rural people. In particular, we outline five major issues that need to be considered: 1) improved understanding of the different FMD viral strains and how they circulate between domestic and wildlife populations; 2) an appreciation for the economic value of wildlife for many African countries whose presence might preclude the country from ever achieving an FMD-free status; 3) exploring ways in which livestock production can be improved without compromising wildlife such as implementing commodity-based trading schemes; 4) introducing a participatory approach involving local farmers and the national veterinary services in the control of FMD; and 5) finally the possibility that transfrontier conservation might offer new hope of integrating decision-making at the wildlife-livestock interface
Emergence and maintenance of actionable genetic drivers at medulloblastoma relapse
BACKGROUND: 90% of tumors) and established genetic drivers (e.g. SHH/WNT/P53 mutations; 60% of rMB events) were maintained from diagnosis. Critically, acquired and maintained rMB events converged on targetable pathways which were significantly enriched at relapse (e.g. DNA damage-signaling) and specific events (e.g. 3p loss) predicted survival post-relapse. CONCLUSIONS: rMB is defined by the emergence of novel events and pathways, in concert with selective maintenance of established genetic drivers. Together, these define the actionable genetic landscape of rMB and provide a basis for improved clinical management and development of stratified therapeutics, across disease-course
Epigenetic deregulation of multiple S100 gene family members by differential hypomethylation and hypermethylation events in medulloblastoma
Deregulated expression of genes encoding members of the S100 family of calcium-binding proteins has been associated with the malignant progression of multiple tumour types. Using a pharmacological expression reactivation approach, we screened 16 S100 genes for evidence of epigenetic regulation in medulloblastoma, the most common malignant brain tumour of childhood. Four family members (S100A2, S100A4, S100A6 and S100A10) demonstrated evidence of upregulated expression in multiple medulloblastoma cell lines, following treatment with the DNA methyltransferase inhibitor, 5′-aza-2′-deoxycytidine. Subsequent analysis revealed methylation of critical CpG sites located within these four genes in an extended cell line panel. Assessment of these genes in the non-neoplastic cerebellum (from which medulloblastomas develop) revealed strong somatic methylation affecting S100A2 and S100A4, whereas S100A6 and S100A10 were unmethylated. Assessed against these normal tissue-specific methylation states, S100A6 and S100A10 demonstrated tumour-specific hypermethylation in medulloblastoma primary tumours (5 out of 40 and 4 out of 35, respectively, both 12%) and cell lines (both 7 out of 9, 78%), which was associated with their transcriptional silencing. Moreover, S100A6 hypermethylation was significantly associated with the aggressive large cell/anaplastic morphophenotype (P=0.026). In contrast, pro-metastatic S100A4 displayed evidence of hypomethylation relative to the normal cerebellum in a significant proportion primary tumours (7 out of 41, 17%) and cell lines (3 out of 9, 33%), which was associated with its elevated expression. In summary, these data characterise complex patterns of somatic methylation affecting S100 genes in the normal cerebellum and demonstrate their disruption causing epigenetic deregulation of multiple S100 family members in medulloblastoma development. Epigenetic events affecting S100 genes have potential clinical utility and merit further investigation as molecular biomarkers for this disease
The molecular landscape and associated clinical experience in infant medulloblastoma: prognostic significance of second-generation subtypes
Aims:
Biomarker‐driven therapies have not been developed for infant medulloblastoma (iMB). We sought to robustly sub‐classify iMB, and proffer strategies for personalized, risk‐adapted therapies.
Methods:
We characterized the iMB molecular landscape, including second‐generation subtyping, and the associated retrospective clinical experience, using large independent discovery/validation cohorts (n = 387).
Results:
iMBGrp3 (42%) and iMBSHH (40%) subgroups predominated. iMBGrp3 harboured second‐generation subtypes II/III/IV. Subtype II strongly associated with large‐cell/anaplastic pathology (LCA; 23%) and MYC amplification (19%), defining a very‐high‐risk group (0% 10yr overall survival (OS)), which progressed rapidly on all therapies; novel approaches are urgently required. Subtype VII (predominant within iMBGrp4) and subtype IV tumours were standard risk (80% OS) using upfront CSI‐based therapies; randomized‐controlled trials of upfront radiation‐sparing and/or second‐line radiotherapy should be considered. Seventy‐five per cent of iMBSHH showed DN/MBEN histopathology in discovery and validation cohorts (P < 0.0001); central pathology review determined diagnosis of histological variants to WHO standards. In multivariable models, non‐DN/MBEN pathology was associated significantly with worse outcomes within iMBSHH. iMBSHH harboured two distinct subtypes (iMBSHH‐I/II). Within the discriminated favourable‐risk iMBSHH DN/MBEN patient group, iMBSHH‐II had significantly better progression‐free survival than iMBSHH‐I, offering opportunities for risk‐adapted stratification of upfront therapies. Both iMBSHH‐I and iMBSHH‐II showed notable rescue rates (56% combined post‐relapse survival), further supporting delay of irradiation. Survival models and risk factors described were reproducible in independent cohorts, strongly supporting their further investigation and development.
Conclusions:
Investigations of large, retrospective cohorts have enabled the comprehensive and robust characterization of molecular heterogeneity within iMB. Novel subtypes are clinically significant and subgroup‐dependent survival models highlight opportunities for biomarker‐directed therapies
Toward Human-Carnivore Coexistence: Understanding Tolerance for Tigers in Bangladesh
Fostering local community tolerance for endangered carnivores, such as tigers (Panthera tigris), is a core component of many conservation strategies. Identification of antecedents of tolerance will facilitate the development of effective tolerance-building conservation action and secure local community support for, and involvement in, conservation initiatives. We use a stated preference approach for measuring tolerance, based on the ‘Wildlife Stakeholder Acceptance Capacity’ concept, to explore villagers’ tolerance levels for tigers in the Bangladesh Sundarbans, an area where, at the time of the research, human-tiger conflict was severe. We apply structural equation modeling to test an a priori defined theoretical model of tolerance and identify the experiential and psychological basis of tolerance in this community. Our results indicate that beliefs about tigers and about the perceived current tiger population trend are predictors of tolerance for tigers. Positive beliefs about tigers and a belief that the tiger population is not currently increasing are both associated with greater stated tolerance for the species. Contrary to commonly-held notions, negative experiences with tigers do not directly affect tolerance levels; instead, their effect is mediated by villagers’ beliefs about tigers and risk perceptions concerning human-tiger conflict incidents. These findings highlight a need to explore and understand the socio-psychological factors that encourage tolerance towards endangered species. Our research also demonstrates the applicability of this approach to tolerance research to a wide range of socio-economic and cultural contexts and reveals its capacity to enhance carnivore conservation efforts worldwide
Should Research Ethics Encourage the Production of Cost-Effective Interventions?
This project considers whether and how research ethics can contribute to the provision of cost-effective medical interventions. Clinical research ethics represents an underexplored context for the promotion of cost-effectiveness. In particular, although scholars have recently argued that research on less-expensive, less-effective interventions can be ethical, there has been little or no discussion of whether ethical considerations justify curtailing research on more expensive, more effective interventions. Yet considering cost-effectiveness at the research stage can help ensure that scarce resources such as tissue samples or limited subject popula- tions are employed where they do the most good; can support parallel efforts by providers and insurers to promote cost-effectiveness; and can ensure that research has social value and benefits subjects. I discuss and rebut potential objections to the consideration of cost-effectiveness in research, including the difficulty of predicting effectiveness and cost at the research stage, concerns about limitations in cost-effectiveness analysis, and worries about overly limiting researchers’ freedom. I then consider the advantages and disadvantages of having certain participants in the research enterprise, including IRBs, advisory committees, sponsors, investigators, and subjects, consider cost-effectiveness. The project concludes by qualifiedly endorsing the consideration of cost-effectiveness at the research stage. While incorporating cost-effectiveness considerations into the ethical evaluation of human subjects research will not on its own ensure that the health care system realizes cost-effectiveness goals, doing so nonetheless represents an important part of a broader effort to control rising medical costs
Instrumented fusion of thoracolumbar fracture with type I mineralized collagen matrix combined with autogenous bone marrow as a bone graft substitute: a four-case report
In order to avoid the morbidity from autogenous bone harvesting, bone graft substitutes are being used more frequently in spinal surgery. There is indirect radiological evidence that bone graft substitutes are efficacious in humans. The purpose of this four-case study was to visually, manually, and histologically assess the quality of a fusion mass produced by a collagen hydroxyapatite scaffold impregnated with autologous bone marrow aspirate for posterolateral fusion. Four patients sustained an acute thoracolumbar fracture and were treated by short posterior segment fusion using the AO fixateur interne. Autologous bone marrow (iliac crest) impregnated hydroxyapatite-collagen scaffold was laid on the decorticated posterior elements. Routine implant removal was performed after a mean of 15.3 months (12–20). During this second surgery, fusion mass was assessed visually and manually. A bone biopsy was sent for histological analysis of all four cases. Fusion was confirmed in all four patients intraoperatively and sagittal stress testing confirmed mechanical adequacy of the fusion mass. Three out of the four (cases 2–4) had their implants removed between 12 and 15 months after the index surgery. All their histological cuts showed evidence of newly formed bone and presence of active membranous and/or enchondral ossification foci. The last patient (case 1) underwent implant removal at 20 months and his histological cuts showed mature bone, but no active ossification foci. This four-case report suggests that the fusion mass produced by a mineralized collagen matrix graft soaked in aspirated bone marrow is histologically and mechanically adequate in a thoracolumbar fracture model. A larger patient series and/or randomized controlled studies are warranted to confirm these initial results
Congenital bovine spinal dysmyelination is caused by a missense mutation in the SPAST gene
Bovine spinal dysmyelination (BSD) is a recessive congenital neurodegenerative disease in cattle (Bos taurus) characterized by pathological changes of the myelin sheaths in the spinal cord. The occurrence of BSD is a longstanding problem in the American Brown Swiss (ABS) breed and in several European cattle breeds upgraded with ABS. Here, we show that the disease locus on bovine chromosome 11 harbors the SPAST gene that, when mutated, is responsible for the human disorder hereditary spastic paraplegia (HSP). Initially, SPAST encoding Spastin was considered a less likely candidate gene for BSD since the modes of inheritance as well as the time of onset and severity of symptoms differ widely between HSP and BSD. However, sequence analysis of the bovine SPAST gene in affected animals identified a R560Q substitution at a position in the ATPase domain of the Spastin protein that is invariant from insects to mammals. Interestingly, three different mutations in human SPAST gene at the equivalent position are known to cause HSP. To explore this observation further, we genotyped more than 3,100 animals of various cattle breeds and found that the glutamine allele exclusively occurred in breeds upgraded with ABS. Furthermore, all confirmed BSD carriers were heterozygous, while all affected calves were homozygous for the glutamine allele consistent with recessive transmission of the underlying mutation and complete penetrance in the homozygous state. Subsequent analysis of recombinant Spastin in vitro showed that the R560Q substitution severely impaired the ATPase activity, demonstrating a causal relationship between the SPAST mutation and BSD
- …