699 research outputs found

    Improving CMB non-Gaussianity estimators using tracers of local structure

    Get PDF
    Local non-Gaussianity causes correlations between large scale perturbation modes and the small scale power. The large-scale CMB signal has contributions from the integrated Sachs Wolfe (ISW) effect, which does not correlate with the small scale power. If this ISW contribution can be removed, the sensitivity to local non-Gaussianity is improved. Gravitational lensing and galaxy counts can be used to trace the ISW contribution; in particular we show that the CMB lensing potential is highly correlated with the ISW signal. We construct a nearly-optimal estimator for the local non-Gaussianity parameter \fnl and investigate to what extent we can use this to decrease the variance on {\fnl}. We show that the variance can be decreased by up to 20%20\% at Planck sensitivity using galaxy counts. CMB lensing is a good bias-independent ISW tracer for future more sensitive observations, though the fractional decrease in variance is small if good polarization data is also available.Comment: 8 pages, 3 figures. Comments welcom

    The covariance of cosmic shear correlation functions and cosmological parameter estimates using redshift information

    Full text link
    Cosmological weak lensing by the large scale structure of the Universe, cosmic shear, is coming of age as a powerful probe of the parameters describing the cosmological model and matter power spectrum. It complements CMB studies, by breaking degeneracies and providing a cross-check. An important measure of the cosmic shear signal are the shear correlation functions; these can be directly calculated from data, and compared with theoretical expectations for different cosmological models and matter power spectra. We present a Monte Carlo method to quickly simulate mock cosmic shear surveys. One application of this method is in the determination of the full covariance matrix for the correlation functions; this includes redshift binning and is applicable to arbitrary survey geometries. Terms arising from shot noise and cosmic variance (dominant on small and large scales respectively) are accounted for naturally. As an illustration of the use of such covariance matrices, we consider to what degree confidence regions on parameters are tightened when redshift binning is employed. The parameters considered are those commonly discussed in cosmic shear analyses - the matter density parameter, dark energy density parameter (classical cosmological constant), power spectrum normalisation and shape parameter. We incorporate our covariance matrices into a likelihood treatment, and also use the Fisher formalism to explore a larger region of parameter space (abridged).Comment: 14 pages, 8 figures, accepted by A&A corrected typos, some changes in the discussion, shortened sections 2.1, 2.2 and 6.2.

    An MCMC Fitting Method for Triaxial Dark Matter Haloes

    Full text link
    Measuring the 3D distribution of mass on galaxy cluster scales is a crucial test of the LCDM model, providing constraints on the behaviour of dark matter. Recent work investigating mass distributions of individual galaxy clusters (e.g. Abell 1689) using weak and strong gravitational lensing has revealed potential inconsistencies between the predictions of structure formation models relating halo mass to concentration and those relationships as measured in massive clusters. However, such analyses employ simple spherical halo models while a growing body of work indicates that triaxial 3D halo structure is both common and important in parameter estimates. The very strong assumptions about the symmetry of the lensing halo implied with circular or perturbative elliptical NFW models are not physically motivated and lead to incorrect parameter estimates with significantly underestimated error bars. We here introduce a Markov Chain Monte Carlo (MCMC) method to fit fully triaxial models to weak lensing data that gives parameter and error estimates that fully incorporate the true uncertainty present in nature. Applying the MCMC triaxial fitting method to a population of NFW triaxial lenses drawn from the shape distribution of structure formation simulations, we find that including triaxiality cannot explain a population of massive, highly concentrated clusters within the framework of LCDM, but easily explains rare cases of apparently massive, highly concentrated, very efficient lensing clusters. Our MCMC triaxial NFW fitting method is easily expandable to include constraints from additional data types, and its application returns model parameters and errors that more accurately capture the true (and limited) extent of our knowledge of the structure of galaxy cluster lenses. (abridged)Comment: 18 pages, 15 figures. Updated to match published versio

    Testing metallicity indicators at z~1.4 with the gravitationally lensed galaxy CASSOWARY 20

    Get PDF
    We present X-shooter observations of CASSOWARY 20 (CSWA 20), a star-forming (SFR ~6 Msol/yr) galaxy at z=1.433, magnified by a factor of 11.5 by the gravitational lensing produced by a massive foreground galaxy at z=0.741. We analysed the integrated physical properties of the HII regions of CSWA 20 using temperature- and density-sensitive emission lines. We find the abundance of oxygen to be ~1/7 of solar, while carbon is ~50 times less abundant than in the Sun. The unusually low C/O ratio may be an indication of a particularly rapid timescale of chemical enrichment. The wide wavelength coverage of X-shooter gives us access to five different methods for determining the metallicity of CSWA 20, three based on emission lines from HII regions and two on absorption features formed in the atmospheres of massive stars. All five estimates are in agreement, within the factor of ~2 uncertainty of each method. The interstellar medium of CSWA 20 only partially covers the star-forming region as viewed from our direction; in particular, absorption lines from neutrals and first ions are exceptionally weak. We find evidence for large-scale outflows of the interstellar medium (ISM) with speeds of up 750 km/s, similar to the values measured in other high-z galaxies sustaining much higher rates of star formation.Comment: 18 pages, 11 figures, accepted for publication in MNRA

    Application of the IDEAS Framework in Adapting a Web-Based Physical Activity Intervention for Young Adult College Students

    Get PDF
    User-centered developmental processes are critical to ensuring acceptability of e-health behavioral interventions, and yet physical activity research continues to be inundated with top-down developmental approaches. The IDEAS (Integrate, Design, Assess, and Share) framework outlines a user-centered process for development of e-health interventions. The purpose of this manuscript is to describe the application of the IDEAS framework in adapting a web-based physical activity intervention for young adult college students. Steps 1–3 emphasized integrating insights from users and theory and Steps 4–7 focused on iterative and rapid design with user feedback. Data were collected via repeat qualitative interviews with young adult college students (N = 7). Resulting qualitative metathemes were engagement, accountability, and cultural fit. Therefore, intervention modifications focused on strategies to foster ongoing engagement with the program (e.g., increase interactivity), support personal and social accountability (e.g., private social media group), and provide a cultural fit within the college lifestyle (e.g., images relevant to student life). The resulting web-based intervention included eight weekly lessons, an expanded resource library, “how-to” videos, step and goal trackers, and a private social media group to be led by a wellness coach. In conclusion, the IDEAS framework guided an efficient, user-centered adaptation process that integrated empirical evidence and behavior change theory with user preferences and feedback. Furthermore, the process allowed us to address barriers to acceptability during the design and build stages rather than at later stages of pilot and efficacy testing

    Observing cosmic string loops with gravitational lensing surveys

    Get PDF
    We show that the existence of cosmic strings can be strongly constrained by the next generation of gravitational lensing surveys at radio frequencies. We focus on cosmic string loops, which simulations suggest would be far more numerous than long (horizon-sized) strings. Using simple models of the loop population and minimal assumptions about the lensing cross section per loop, we estimate the optical depth to lensing and show that extant radio surveys such as CLASS have already ruled out a portion of the cosmic string model parameter space. Future radio interferometers, such as LOFAR and especially SKA, may constrain GÎŒ/c2<10−9G\mu/c^2 < 10^{-9} in some regions of parameter space, outperforming current constraints from pulsar timing and the CMB by up to two orders of magnitude. This method relies on direct detections of cosmic strings, and so is less sensitive to the theoretical uncertainties in string network evolution that weaken other constraints.Comment: 20 pages, 3 figures. v3: Some clarification of text, revised figure, appendix added. Submitted to Phys. Rev.

    A New Look at Massive Clusters: weak lensing constraints on the triaxial dark matter halos of Abell 1689, Abell 1835, & Abell 2204

    Full text link
    Measuring the 3D distribution of mass on galaxy cluster scales is a crucial test of the LCDM model, providing constraints on the nature of dark matter. Recent work investigating mass distributions of individual galaxy clusters (e.g. Abell 1689) using weak and strong gravitational lensing has revealed potential inconsistencies between the predictions of structure formation models relating halo mass to concentration and those relationships as measured in massive clusters. However, such analyses employ simple spherical halo models while a growing body of work indicates that triaxial 3D halo structure is both common and important in parameter estimates. We recently introduced a Markov Chain Monte Carlo (MCMC) method to fit fully triaxial models to weak lensing data that gives parameter and error estimates that fully incorporate the true shape uncertainty present in nature. In this paper we apply that method to weak lensing data obtained with the ESO/MPG Wide-Field Imager for galaxy clusters A1689, A1835, and A2204, under a range of Bayesian priors derived from theory and from independent X-ray and strong lensing observations. For Abell 1689, using a simple strong lensing prior we find marginalized mean parameter values M_200 = (0.83 +- 0.16)x10^15 M_solar/h and C=12.2 +- 6.7, which are marginally consistent with the mass-concentration relation predicted in LCDM. The large error contours that accompany our triaxial parameter estimates more accurately represent the true extent of our limited knowledge of the structure of galaxy cluster lenses, and make clear the importance of combining many constraints from other theoretical, lensing (strong, flexion), or other observational (X-ray, SZ, dynamical) data to confidently measure cluster mass profiles. (Abridged)Comment: 21 pages, 10 figures, accepted for publication in MNRA
    • 

    corecore