4,944 research outputs found

    Scaling of Olfactory Antennae of the Terrestrial Hermit Crabs \u3cem\u3eCoenobita rugosus\u3c/em\u3e and \u3cem\u3eCoenobita perlatus\u3c/em\u3e During Ontogeny

    Get PDF
    Although many lineages of terrestrial crustaceans have poor olfactory capabilities, crabs in the family Coenobitidae, including the terrestrial hermit crabs in the genus Coenobita, are able to locate food and water using olfactory antennae (antennules) to capture odors from the surrounding air. Terrestrial hermit crabs begin their lives as small marine larvae and must find a suitable place to undergo metamorphosis into a juvenile form, which initiates their transition to land. Juveniles increase in size by more than an order of magnitude to reach adult size. Since odor capture is a process heavily dependent on the size and speed of the antennules and physical properties of the fluid, both the transition from water to air and the large increase in size during ontogeny could impact odor capture. In this study, we examine two species of terrestrial hermit crabs, Coenobita perlatus H. Milne-Edwards and Coenobita rugosus H. Milne-Edwards, to determine how the antennule morphometrics and kinematics of flicking change in comparison to body size during ontogeny, and how this scaling relationship could impact odor capture by using a simple model of mass transport in flow. Many features of the antennules, including the chemosensory sensilla, scaled allometrically with carapace width and increased slower than expected by isometry, resulting in relatively larger antennules on juvenile animals. Flicking speed scaled as expected with isometry. Our mass-transport model showed that allometric scaling of antennule morphometrics and kinematics leads to thinner boundary layers of attached fluid around the antennule during flicking and higher odorant capture rates as compared to antennules which scaled isometrically. There were no significant differences in morphometric or kinematic measurements between the two species

    Glacial facies associations in a Neoproterozoic back-arc setting, Zavkhan Basin, western Mongolia

    Get PDF
    Diamictites, many of glacial origin, are globally distributed in the Neoproterozoic. Recently, two relatively thin diamictites in the Maikhan Uul Member at the base of the Neoproterozoic Tsagaan Oloom Formation from the Zavkhan Basin of western Mongolia have been identified as being of glacial origin. The Mongolian diamictites form a series of backstepping units within the transgressive systems tract of two major depositional sequences associated with sea-level changes. In each case the diamictites of the transgressive systems tract are abruptly overlain by deeper water, upward shoaling highstand systems tracts consisting of thinly bedded sandstones and shales in sequence 1 and thinly bedded, dark carbonates in sequence 3. The fact that the sequences conform closely to depositional models established at other localities suggests that all are related to major ice ages and that the depositional sequences they have generated provide a valuable tool for global correlation in this part of the stratigraphic column. Available stratigraphic and isotope geochemical information presented by Brasier et al. (1996, this issue) suggests that both diamictites are likely to be of Sturtian age. A riftogenic setting and Sturtian age for the diamictites provide a link with eastern Australia and western America. It is possible, therefore, that these diamictites formed during the breakup of a supercontinental assembly including Siberia, Australia and Laurentia c. 750-725 Ma B

    Effects of polarization on the transmission and localization of classical waves in weakly scattering metamaterials

    Full text link
    We summarize the results of our comprehensive analytical and numerical studies of the effects of polarization on the Anderson localization of classical waves in one-dimensional random stacks. We consider homogeneous stacks composed entirely of normal materials or metamaterials, and also mixed stacks composed of alternating layers of a normal material and metamaterial. We extend the theoretical study developed earlier for the case of normal incidence [A. A. Asatryan et al, Phys. Rev. B 81, 075124 (2010)] to the case of off-axis incidence. For the general case where both the refractive indices and layer thicknesses are random, we obtain the long-wave and short-wave asymptotics of the localization length over a wide range of incidence angles (including the Brewster ``anomaly'' angle). At the Brewster angle, we show that the long-wave localization length is proportional to the square of the wavelength, as for the case of normal incidence, but with a proportionality coefficient substantially larger than that for normal incidence. In mixed stacks with only refractive-index disorder, we demonstrate that p-polarized waves are strongly localized, while for s-polarization the localization is substantially suppressed, as in the case of normal incidence. In the case of only thickness disorder, we study also the transition from localization to delocalization at the Brewster angle.Comment: 15 pages, 11 figures, accepted for publication in PR

    Anderson Localization of Classical Waves in Weakly Scattering Metamaterials

    Full text link
    We study the propagation and localization of classical waves in one-dimensional disordered structures composed of alternating layers of left- and right-handed materials (mixed stacks) and compare them to the structures composed of different layers of the same material (homogeneous stacks). For weakly scattering layers, we have developed an effective analytical approach and have calculated the transmission length within a wide region of the input parameters. When both refractive index and layer thickness of a mixed stack are random, the transmission length in the long-wave range of the localized regime exhibits a quadratic power wavelength dependence with the coefficients different for mixed and homogeneous stacks. Moreover, the transmission length of a mixed stack differs from reciprocal of the Lyapunov exponent of the corresponding infinite stack. In both the ballistic regime of a mixed stack and in the near long-wave region of a homogeneous stack, the transmission length of a realization is a strongly fluctuating quantity. In the far long-wave part of the ballistic region, the homogeneous stack becomes effectively uniform and the transmission length fluctuations are weaker. The crossover region from the localization to the ballistic regime is relatively narrow for both mixed and homogeneous stacks. In mixed stacks with only refractive-index disorder, Anderson localization at long wavelengths is substantially suppressed, with the localization length growing with the wavelength much faster than for homogeneous stacks. The crossover region becomes essentially wider and transmission resonances appear only in much longer stacks. All theoretical predictions are in an excellent agreement with the results of numerical simulations.Comment: 19 pages, 16 figures, submitted to PR

    The Milky Way's Kiloparsec Scale Wind: A Hybrid Cosmic-Ray and Thermally Driven Outflow

    Full text link
    We apply a wind model, driven by combined cosmic-ray and thermal-gas pressure, to the Milky Way, and show that the observed Galactic diffuse soft X-ray emission can be better explained by a wind than by previous static gas models. We find that cosmic-ray pressure is essential to driving the observed wind. Having thus defined a "best-fit" model for a Galactic wind, we explore variations in the base parameters and show how the wind's properties vary with changes in gas pressure, cosmic-ray pressure and density. We demonstrate the importance of cosmic rays in launching winds, and the effect cosmic rays have on wind dynamics. In addition, this model adds support to the hypothesis of Breitschwerdt and collaborators that such a wind may help explain the relatively small gradient observed in gamma-ray emission as a function of galactocentric radius.Comment: 14 pages, 11 figures; Accepted to Ap

    Combining frequency and time domain approaches to systems with multiple spike train input and output

    Get PDF
    A frequency domain approach and a time domain approach have been combined in an investigation of the behaviour of the primary and secondary endings of an isolated muscle spindle in response to the activity of two static fusimotor axons when the parent muscle is held at a fixed length and when it is subjected to random length changes. The frequency domain analysis has an associated error process which provides a measure of how well the input processes can be used to predict the output processes and is also used to specify how the interactions between the recorded processes contribute to this error. Without assuming stationarity of the input, the time domain approach uses a sequence of probability models of increasing complexity in which the number of input processes to the model is progressively increased. This feature of the time domain approach was used to identify a preferred direction of interaction between the processes underlying the generation of the activity of the primary and secondary endings. In the presence of fusimotor activity and dynamic length changes imposed on the muscle, it was shown that the activity of the primary and secondary endings carried different information about the effects of the inputs imposed on the muscle spindle. The results presented in this work emphasise that the analysis of the behaviour of complex systems benefits from a combination of frequency and time domain methods

    Sedimentological Equilibrium of Marshes and Mudflats at Cumberland Island National Seashore, Georgia

    Get PDF
    Proceedings of the 1993 Georgia Water Resources Conference, April 20-21, 1993, Athens, Georgia.Coastal wetland loss has become nationally recognized as a significant habitat destruction and degradation process (Frayer et al., 1983 and Park et al., 1989). The causes of land loss in wetlands are complex, however, linkages to natural processes and cultural factors are poorly understood in most cases. Efforts to establish causal relationships have led a number of researchers to develop techniques for assessing changes in marsh environments. Until recently these techniques have been limited to measurements of planimetric change or land loss. Changes in rates of sedimentation, nutrient supply, and inundation may cause physiological stress to marsh vegetation. The ultimate result is plant death, disintegration of the root mat, and land loss. Few efforts have been directed toward measuring the early process-setting changes. The rate of change in marsh surface elevation - if it could be measured reliably - might serve as a diagnostic predictor of these more subtle effects of microtopographical change. Such knowledge could serve as the basis of a very focused countermeasure program to reduce or stop land loss.Sponsored and Organized by: U.S. Geological Survey, Georgia Department of Natural Resources, The University of Georgia, Georgia State University, Georgia Institute of TechnologyThis book was published by the Institute of Natural Resources, The University of Georgia, Athens, Georgia 30602 with partial funding provided by the U.S. Department of Interior, Geological Survey, through the Georgia Water Research Institute as authorized by the Water Resources Research Act of 1984 (P.L. 98-242). The views and statements advanced in this publication are solely those of the authors and do not represent official views or policies of the University of Georgia or the U.S. Geological Survey or the conference sponsors

    Bloch-Nordsieck violating electroweak corrections to inclusive TeV scale hard processes

    Get PDF
    We point out that, since the colliders initial states (e+ e-,p p, p pbar, ... ) carry a definite nonabelian flavor, electroweak radiative corrections to inclusive hard cross sections at the TeV scale are affected by peculiar Bloch-Nordsieck violating double logs. We recall the setup of soft cancellation theorems, and we analyze the magnitude of the noncancelling terms in the example of electron - positron annihilation into hadrons.Comment: Minor typos corrected, references added. Final version to appear on Phys. Rev. Let
    corecore