850 research outputs found

    Bringing home the trash: Do colony-based differences in foraging distribution lead to increased plastic ingestion in Laysan albatrosses?

    Get PDF
    When searching for prey, animals should maximize energetic gain, while minimizing energy expenditure by altering their movements relative to prey availability. However, with increasing amounts of marine debris, what once may have been ‘optimal’ foraging strategies for top marine predators, are leading to sub-optimal diets comprised in large part of plastic. Indeed, the highly vagile Laysan albatross (Phoebastria immutabilis) which forages throughout the North Pacific, are well known for their tendency to ingest plastic. Here we examine whether Laysan albatrosses nesting on Kure Atoll and Oahu Island, 2,150 km apart, experience different levels of plastic ingestion. Twenty two geolocators were deployed on breeding adults for up to two years. Regurgitated boluses of undigestable material were also collected from chicks at each site to compare the amount of plastic vs. natural foods. Chicks from Kure Atoll were fed almost ten times the amount of plastic compared to chicks from Oahu despite boluses from both colonies having similar amounts of natural food. Tracking data indicated that adults from either colony did not have core overlapping distributions during the early half of the breeding period and that adults from Kure had a greater overlap with the putative range of the Western Garbage Patch corroborating our observation of higher plastic loads at this colony. At-sea distributions also varied throughout the year suggesting that Laysan albatrosses either adjusted their foraging behavior according to constraints on time away from the nest or to variation in resources. However, in the non-breeding season, distributional overlap was greater indicating that the energy required to reach the foraging grounds was less important than the total energy available. These results demonstrate how a marine predator that is not dispersal limited alters its foraging strategy throughout the reproductive cycle to maximize energetic gain and how this has led to differences in plastic ingestion

    New State Record of the Psyllid Heterotrioza chenopodii (Reuter, 1876) (Hemiptera: Psylloidea: Triozidae) for Hawaii

    Get PDF
    We report the first state record of a widespread palaearctic psyllid species, Heterotrioza chenopodii (Reuter, 1876), for the state of Hawaii. This species belongs to a small genus of 13 species feeding exclusively on host plants in the plant family Amaranthaceae (Lauterer 1982, Burckhardt and Ouvrard 2012, Ouvrard 2019). Recorded host genera are Atriplex, Beta, Chenopodium, and Spinacia (Ouvrard 2019). In Hawaii, a likely host plant is Atriplex suberecta, and possibly A. semibaccata and Chenopodium oahuense

    Bases expert statement on the use of music for movement among people with Parkinson's

    Get PDF
    First published in The Sport and Exercise Scientist, February 2020, Issue 63. Published by the British Association of Sport and Exercise Sciences – www.bases.org.uk.Music is an artistic auditory stimulus that unfolds over time. It can prime specific actions and prompt engagement in physical activity as well as heighten motivation during motor tasks (Karageorghis, 2020). Contrastingly, it can be used to downregulate arousal to facilitate the transition from an active to a sedentary state or to ameliorate anxiety. In therapeutic applications, musical features such as rhythm, melody and harmony have been shown to elicit psychological and physiological changes (Thaut & Hoemberg, 2014). Parkinson’s is a degenerative neurological condition in which the loss of dopamine neurons results in impaired initiation and control of movement, with common symptoms including tremor, postural instability and gait disturbance. There are also non-motor effects that include apathy, anxiety and depression. Medication does not alleviate all manifestations of the condition and there is presently no known cure (Obeso et al., 2017). It is notable that people with Parkinson’s are estimated to be 30% less active than agematched peers (Ramaswamy et al., 2018). Nonetheless, evidence is emerging that a range of exercise-based and social activities that involve musical engagement can serve to address the common symptoms and enhance quality of life (Thaut & Hoemberg, 2014). This statement brings together an international interdisciplinary team to outline what is known about music-related applications for people with Parkinson’s, and to provide recommendations for exercise and health practitioners.Peer reviewe

    The Use of Predator Proof Fencing as a Management Tool in the Hawaiian Islands: A Case Study of Ka`ena Point Natural Area Reserve

    Get PDF
    Reports were scanned in black and white at a resolution of 600 dots per inch and were converted to text using Adobe Paper Capture Plug-in.The Ka`ena Point Ecosystem Restoration Project was the result of a partnership between the Hawai`i Department of Land and Natural Resources, Divisions of Forestry and Wildlife and State Parks, the U.S. Fish and Wildlife Service, and the Hawai`i Chapter of The Wildlife Society. Ka`ena Point Natural Area Reserve (NAR) hosts one of the largest seabird colonies in the main Hawaiian islands, three species of endangered plants, and is a pupping ground for the endangered Hawaiian monk seals. Prior to fence construction, nesting seabirds and native plants were under constant threat from predatory animals; up to 15% of seabird chicks were killed each year prior to fledging and many endangered plants were unable to reproduce as a result of seed predation. The project involved the construction of predator-proof fencing (2m tall) to prevent feral predators such as dogs, cats, mongoose, rats and mice from entering into 20ha of coastal habitat within Ka`ena Point, followed by removal of these species

    The development and pilot testing of the Self-management Programme of Activity, Coping and Education for Chronic Obstructive Pulmonary Disease (SPACE for COPD)

    Get PDF
    Purpose: There is no independent standardized self-management approach available for chronic obstructive pulmonary disease (COPD). The aim of this project was to develop and test a novel self-management manual for individuals with COPD. Patients: Participants with a confirmed diagnosis of COPD were recruited from primary care. Methods: A novel self-management manual was developed with health care professionals and patients. Five focus groups were conducted with individuals with COPD (N = 24) during development to confirm and enhance the content of the prototype manual. The Self-management Programme of Activity, Coping and Education for Chronic Obstructive Pulmonary Disease (SPACE for COPD) manual was developed as the focus of a comprehensive self-management approach facilitated by health care professionals. Preference for delivery was initial face-to-face consultation with telephone follow-up. The SPACE for COPD manual was piloted with 37 participants in primary care. Outcome measures included the Self-Report Chronic Respiratory Questionnaire, Incremental Shuttle Walk Test, and Endurance Shuttle Walking Test (ESWT); measurements were taken at baseline and 6 weeks. Results: The pilot study observed statistically significant improvements for the dyspnea domain of the Self-Report Chronic Respiratory Questionnaire and ESWT. Dyspnea showed a mean change of 0.67 (95% confidence interval 0.23–1.11, P = 0.005). ESWT score increased by 302.25 seconds (95% confidence interval 161.47–443.03, P < 0.001). Conclusion: This article describes the development and delivery of a novel self-management approach for COPD. The program, incorporating the SPACE for COPD manual, appears to provoke important changes in exercise capacity and breathlessness for individuals with COPD managed in primary care

    The Nihoku Ecosystem Restoration Project: A case study in predator exclusion fencing, ecosystem restoration, and seabird translocation

    Get PDF
    Reports were scanned in black and white at a resolution of 600 dots per inch and were converted to text using Adobe Paper Capture Plug-in.Newell’s Shearwater (Puffinus auricularis newelli; NESH) and Hawaiian Petrel (Pterodroma sandwichensis; HAPE) are both listed under the Endangered Species Act of 1973 and are declining due to collisions with power lines and structures, light attraction, predation by feral cats, pigs, rats, and introduced Barn Owls, habitat degradation by feral ungulates (pigs, goats) and invasive exotic plants. Protection of NESH and HAPE on their nesting grounds and reduction of collision and lighting hazards are high priority recovery actions for these species. Given the challenges in protecting nesting birds in their rugged montane habitats, it has long been desirable to also create breeding colonies of both species in more accessible locations that offer a higher level of protection. Translocation of birds to breeding sites within predator exclusion fences was ranked as priority 1 in the interagency 5-year Action Plan for Newell’s Shearwater and Hawaiian Petrel. In 2012, funding became available through several programs to undertake this action at Kilauea Point National Wildlife Refuge (KPNWR), which is home to one of the largest seabird colonies in the main Hawaiian Islands. The project was named the “Nihoku Ecosystem Restoration Project” after the area on the Refuge where the placement of the future colony was planned. The Nihoku Ecosystem Restoration Project is a result of a large partnership between multiple government agencies and non-profit groups who have come together to help preserve the native species of Hawaii. There were four stages to this multi-faceted project: permitting and biological monitoring, fence construction, restoration and predator eradication, followed by translocation of the birds to the newly secured habitat. The translocation component is expected to last five years and involve up to 90 individuals each of NESH and HAPE. Prior to fence construction, baseline monitoring data were collected in order to provide a record of initial site conditions and species diversity. Surveys were conducted quarterly from 2012-2014, investigating diversity and richness of plant, invertebrate, mammalian, and avian species. A 650 m (2130 ft) long predator proof fence was completed at Nihoku in September 2014, enclosing 2.5 ha (6.2 ac), and all mammalian predators were eradicated by March 2015. From 2015-2017, approximately 40% of the fenced area (~1 ha) was cleared of non-native vegetation using heavy machinery and herbicide application. A water catchment and irrigation system was installed, and over 18,000 native plants representing 37 native species were outplanted in the restoration area. The plant species selected are low-in-stature, making burrow excavation easier for seabirds while simultaneously providing forage for Nene (Branta sandvicensis). Habitat restoration was done in phases (10-15% of the project per year) and will be continued until the majority of the area has been restored. In addition to habitat restoration, 50 artificial burrows were installed in the restoration to facilitate translocation activities. From 2012-2017 potential source colonies of NESH and HAPE were located by the Kauai Endangered Seabird Recovery Project (KESRP) with visual, auditory, and ground searching methods at locations around Kauai. The sites that were selected as source colonies for both species were Upper Limahuli Preserve (owned by the National Tropical Botanical Garden; NTBG) and several sites within the Hono o Na Pali Natural Area Reserve system. These sites had high call rates, high burrow densities to provide an adequate source of chicks for the translocation, and had active predator control operations in place to offset any potential impacts of the monitoring. Translocation protocols were developed based on previous methods developed in New Zealand; on the ground training was done by the translocation team by visiting active projects in New Zealand. In year one, 10 HAPE and eight NESH were translocated, and the goal is to translocate up to 20 in subsequent years for a cohort size of 90 birds of each species over a five year period. Post-translocation monitoring has been initiated to gauge the level of success, and social attraction has been implemented in an attempt to attract adults to the area. It is anticipated that the chicks raised during this project will return to breed at Nihoku when they are 65-6 years old; for the first cohort released in 2015 this would be starting in 2020. Once this occurs, Nihoku will be the first predator-free breeding area of both species in Hawaii.This project and manuscript are part of a large collaboration that spans beyond the agencies mentioned. Many individuals were consulted for advice and input along the way. For botanical and invertebrate advice, we thank: David Burney, Lida Burney, Natalia Tangalin, Emory Griffin‐Noyes, Kawika Winter, Kim Starr, Forest Starr, Sheldon Plentovich and Keren Gunderson. For assistance with translocation training and predator exclusion fence technical advice we thank Helen Gummer, John McLennan, Lindsay Wilson, and Darren Peters. For reviewing documents related to this project, and for feedback on techniques we thank the seabird hui, particularly Fern Duvall, Jay Penniman, Megan Laut, Darcy Hu and Cathleen Bailey. For their on the ground assistance at KPNWR, we thank: Shannon Smith, Chadd Smith, Warren Madeira, Rob Petersen, Jennifer Waipa, Padraic Gallagher, Carolyn Rushforth, Kristina Macaulay, Jimmy Macaulay, and Jillian Cosgrove. We would also like to thank Chris Mottley, Kyle Pias and the entire predator control team in Hono o Na Pali NAR and Kawika Winter, Chiemi Nagle, Merlin Edmonds and the entire predator control team in Upper Limahuli Preserve. We would also like to thank the Kaua‘i Island Utility Co‐operative (KIUC) for the funding that they provide – through a Habitat Conservation Plan – to provide predator control and seabird monitoring at several of the sites used for translocation. Lastly, we would like to thank all of the endangered seabird technicians within the Kauaʻi Endangered Seabird Recovery Project for all of their hard work in montane colonies. Mahalo

    Across borders: External factors and prior behaviour influence North Pacific albatross associations with fishing vessels

    Get PDF
    Understanding encounters between marine predators and fisheries across national borders and outside national jurisdictions offers new perspectives on unwanted interactions to inform ocean management and predator conservation. Although seabird–fisheries overlap has been documented at many scales, remote identification of vessel encounters has lagged because vessel movement data often are lacking. Here, we reveal albatrosses–fisheries associations throughout the North Pacific Ocean. We identified commercial fishing operations using Global Fishing Watch data and algorithms to detect fishing vessels. We compiled GPS tracks of adult black-footed Phoebastria nigripes and Laysan Phoebastria immutabilis albatrosses, and juvenile short-tailed albatrosses Phoebastria albatrus. We quantified albatrosses-vessel encounters based on the assumed distance that birds perceive a vessel (≤30 km), and associations when birds approached vessels (≤3 km). For each event we quantified bird behaviour, environmental conditions and vessel characteristics and then applied Boosted Regression Tree models to identify drivers and the duration of these associations. In regions of greater fishing effort short-tailed and Laysan albatrosses associated with fishing vessels more frequently. However, fishing method (e.g. longline, trawl) and flag nation did not influence association prevalence nor the duration short-tailed albatrosses attended fishing vessels. Laysan albatrosses were more likely to approach longer vessels. Black-footed albatrosses were the most likely to approach vessels (61.9%), but limited vessel encounters (n = 21) prevented evaluation of meaningful explanatory models for this species of high bycatch concern. Temporal variables (time of day and month) and bird behavioural state helped explain when short-tailed albatrosses were in close proximity to a vessel, but environmental conditions were more important for explaining interaction duration. Laysan albatrosses were more likely to associate with vessels while searching and during the last 60% (by time) of their trips. Our results provide specific species–fisheries insight regarding contributing factors of high-risk associations that could lead to bycatch of albatrosses within national waters and on the high seas. Policy implications. Given the availability of Global Fishing Watch data, our analysis can be applied to other marine predators—if tracking data are available—to identify spatio-temporal patterns, vessel specific attributes and predator behaviours associated with fishing vessel associations, thus enabling predictive modelling and targeted mitigation measures
    corecore