923 research outputs found

    Effects of Ascorbic Acid Deficiencies on Larvae of \u3ci\u3eLymantria Dispar\u3c/i\u3e (Lepidoptera: Lymantriidae)

    Get PDF
    We assessed the effects of ascorbic acid and total vitamin deficiencies on growth, food processing efficiencies and survival of larval gypsy moths. Artificial diet lacking ascorbic acid did not alter performance of fourth instars, whereas diet lacking a total vitamin mix margmally reduced growth. All vita- min deficient diets substantially reduced survival of fourth-fifth instars. Mortality occurred primarily during molting periods. providing further evidence of the putative role of ascorbic acid in cuticle formation

    The nonrelativistic limit of Dirac-Fock codes: the role of Brillouin configurations

    Get PDF
    We solve a long standing problem with relativistic calculations done with the widely used Multi-Configuration Dirac-Fock Method (MCDF). We show, using Relativistic Many-Body Perturbation Theory (RMBPT), how even for relatively high-ZZ, relaxation or correlation causes the non-relativistic limit of states of different total angular momentum but identical orbital angular momentum to have different energies. We show that only large scale calculations that include all single excitations, even those obeying the Brillouin's theorem have the correct limit. We reproduce very accurately recent high-precision measurements in F-like Ar, and turn then into precise test of QED. We obtain the correct non-relativistic limit not only for fine structure but also for level energies and show that RMBPT calculations are not immune to this problem.Comment: AUgust 9th, 2004 Second version Nov. 18th, 200

    Fundamental Gates for a Strongly Correlated Two-Electron Quantum Ring

    Full text link
    We demonstrate that conditional as well as unconditional basic operations which are prerequisite for universal quantum gates can be performed with almost 100% fidelity within a strongly interacting two-electron quantum ring. Both sets of operations are based on a quantum control algorithm that optimizes a driving electromagnetic pulse for a given quantum gate. The demonstrated transitions occur on a time scale much shorter than typical decoherence times of the system.Comment: 4 pages, 4 figures, copyright 2010 The American Physical Societ

    Dielectronic Resonance Method for Measuring Isotope Shifts

    Full text link
    Longstanding problems in the comparison of very accurate hyperfine-shift measurements to theory were partly overcome by precise measurements on few-electron highly-charged ions. Still the agreement between theory and experiment is unsatisfactory. In this paper, we present a radically new way of precisely measuring hyperfine shifts, and demonstrate its effectiveness in the case of the hyperfine shift of 4s_1/24s\_{1/2} and 4p_1/24p\_{1/2} in 207Pb53+^{207}\mathrm{Pb}^{53+}. It is based on the precise detection of dielectronic resonances that occur in electron-ion recombination at very low energy. This allows us to determine the hyperfine constant to around 0.6 meV accuracy which is on the order of 10%

    Resonance structure in the Li^- photodetachment cross section

    Full text link
    We report on the first observation of resonance structure in the total cross section for the photodetachment of Li^-. The structure arises from the autodetaching decay of doubly excited ^1P states of Li^- that are bound with respect to the 3p state of the Li atom. Calculations have been performed for both Li^- and H^- to assist in the identification of these resonances. The lowest lying resonance is a symmetrically excited intrashell resonance. Higher lying asymmetrically excited intershell states are observed which converge on the Li(3p) limit.Comment: 4 pages, 2 figure, 19 references, RevTeX, figures in ep

    EU Peatlands: Current Carbon Stocks and Trace Gas Fluxes

    Get PDF
    Peatlands in Europe has formed a significant sink for atmospheric CO2 since the last glacial maximum. Currently they are estimated to hold ca. 42 Gt carbon in the form of peat and are therefore a considerable component in the European carbon budget. Due to the generally wet soil conditions in peatlands they are also significant emitters of the strong greenhouse gas (GHG) methane (CH4) and in some cases also of nitrous oxide (N2O). The EU funded CarboEurope-GHG Concerted Action attempts to develop a reliable and complete greenhouse gas budget for Europe and this report aims to provide a review and synthesis of the available information about GHG exchanges in European peatlands and their underlying processes. A best estimate for all the European countries shows that some are currently sinks for atmospheric CO2 while others are sources. In contrast, for CH4 and N2O, only the sources are relevant. Whilst some countries are CO2 sinks, all countries are net GHG emitters from peatlands. The results presented, however, carry large uncertainties, which cannot be adequately quantified yet. One outstanding uncertainty is the distribution of land use types, particular in Russia, the largest European peat nation. The synthesis of GHG exchange, nevertheless, indicates some interesting features. Russia hosts an estimated 41% of European peatlands and contributes most to all GHG exchanges (CO2: 25%, CH4: 52%, N2O: 26%, Total: 37%). Germany is the second-largest emitter (12% of European total) although it contains only 3.2% of European peatlands. The reason is the use of most of the peatland area for intensive cropland and grassland. The largest CO2 emitters are countries with large agricultural peatland areas (Russia, Germany, Belarus, Poland), the largest N2O emitters are those with large agricultural fen areas (Russia, Germany, Finland). In contrast, the largest CH4 emitters are concentrated in regions with large areas of intact mires, namely Russia and Scandinavia. High average emission densities above 3.5 t C-equiv. ha-1 are found in the Southeast Mediterranean, Germany and the Netherlands where agricultural use of peatlands is intense. Low average emission densities below 0.3 t C-equiv. ha-1 occur where mires and peatland forests dominate, e.g. Finland and the UK. This report concludes by pointing at key gaps in our knowledge about peatland carbon stocks and GHG exchanges which include insufficient basic information on areal distribution of peatlands, measurements of peat depth and also a lack of flux datasets providing full annual budgets of GHG exchanges

    Towards operational remote sensing of forest carbon balance across Northern Europe

    Get PDF
    Monthly averages of ecosystem respiration (ER), gross primary production (GPP) and net ecosystem exchange (NEE) over Scandinavian forest sites were estimated using regression models driven by air temperature (AT), absorbed photosynthetically active radiation (APAR) and vegetation indices. The models were constructed and evaluated using satellite data from Terra/MODIS and measured data collected at seven flux tower sites in northern Europe. Data used for model construction was excluded from the evaluation. Relationships between ground measured variables and the independent variables were investigated. <br><br> It was found that the enhanced vegetation index (EVI) at 250 m resolution was highly noisy for the coniferous sites, and hence, 1 km EVI was used for the analysis. Linear relationships between EVI and the biophysical variables were found: correlation coefficients between EVI and GPP, NEE, and AT ranged from 0.90 to 0.79 for the deciduous data, and from 0.85 to 0.67 for the coniferous data. Due to saturation, there were no linear relationships between normalized difference vegetation index (NDVI) and the ground measured parameters found at any site. APAR correlated better with the parameters in question than the vegetation indices. Modeled GPP and ER were in good agreement with measured values, with more than 90% of the variation in measured GPP and ER being explained by the coniferous models. The site-specific respiration rate at 10°C (<i>R</i><sub>10</sub>) was needed for describing the ER variation between sites. Even though monthly NEE was modeled with less accuracy than GPP, 61% and 75% (dec. and con., respectively) of the variation in the measured time series was explained by the model. These results are important for moving towards operational remote sensing of forest carbon balance across Northern Europe

    Improving a Dental School\u27s Clinic Operations Using Lean Process Improvement

    Get PDF
    The term lean production, also known as Lean, describes a process of operations management pioneered at the Toyota Motor Company that contributed significantly to the success of the company. Although developed by Toyota, the Lean process has been implemented at many other organizations, including those in health care, and should be considered by dental schools in evaluating their clinical operations. Lean combines engineering principles with operations management and improvement tools to optimize business and operating processes. One of the core concepts is relentless elimination of waste (non-value-added components of a process). Another key concept is utilization of individuals closest to the actual work to analyze and improve the process. When the medical center of the University of Kentucky adopted the Lean process for improving clinical operations, members of the College of Dentistry trained in the process applied the techniques to improve inefficient operations at the Walk-In Dental Clinic. The purpose of this project was to reduce patients\u27 average in-the-door-to-out-the-door time from over four hours to three hours within 90 days. Achievement of this goal was realized by streamlining patient flow and strategically relocating key phases of the process. This initiative resulted in patient benefits such as shortening average in-the-door-to-out-the-door time by over an hour, improving satisfaction by 21%, and reducing negative comments by 24%, as well as providing opportunity to implement the electronic health record, improving teamwork, and enhancing educational experiences for students. These benefits were achieved while maintaining high-quality patient care with zero adverse outcomes during and two years following the process improvement project

    Relativistic Calculation of two-Electron one-Photon and Hypersatellite Transition Energies for 12≤Z≤3012\leq Z\leq30 Elements

    Full text link
    Energies of two-electron one-photon transitions from initial double K-hole states were computed using the Dirac-Fock model. The transition energies of competing processes, the Kα\alpha hypersatellites, were also computed. The results are compared to experiment and to other theoretical calculations.Comment: accepted versio
    • …
    corecore