21 research outputs found

    Vascular Remodeling in Health and Disease

    Get PDF
    The term vascular remodeling is commonly used to define the structural changes in blood vessel geometry that occur in response to long-term physiologic alterations in blood flow or in response to vessel wall injury brought about by trauma or underlying cardiovascular diseases.1, 2, 3, 4 The process of remodeling, which begins as an adaptive response to long-term hemodynamic alterations such as elevated shear stress or increased intravascular pressure, may eventually become maladaptive, leading to impaired vascular function. The vascular endothelium, owing to its location lining the lumen of blood vessels, plays a pivotal role in regulation of all aspects of vascular function and homeostasis.5 Thus, not surprisingly, endothelial dysfunction has been recognized as the harbinger of all major cardiovascular diseases such as hypertension, atherosclerosis, and diabetes.6, 7, 8 The endothelium elaborates a variety of substances that influence vascular tone and protect the vessel wall against inflammatory cell adhesion, thrombus formation, and vascular cell proliferation.8, 9, 10 Among the primary biologic mediators emanating from the endothelium is nitric oxide (NO) and the arachidonic acid metabolite prostacyclin [prostaglandin I2 (PGI2)], which exert powerful vasodilatory, antiadhesive, and antiproliferative effects in the vessel wall

    Characterization of [(3)H]-heparin binding in human vascular smooth muscle cells and its relationship to the inhibition of DNA synthesis

    No full text
    1. The glycosaminoglycan heparin inhibits vascular smooth muscle cell (VSMC) proliferation and migration, but the mechanism of its antiproliferative action remains unclear. Heparin has been reported to bind to high affinity cell surface sites on animal VSMC before undergoing receptor mediated endocytosis resulting in signal transduction into the cytoplasm and modulation of genes involved in proliferation. In this study, we have characterized the binding of [(3)H]-heparin to human saphenous vein-derived VSMC and examined whether there is any relationship between the affinity of [(3)H]-heparin binding and the inhibitory effect of heparin and its structural analogues on DNA synthesis. 2. At 4°C [(3)H]-heparin binding to human VSMC occurred in a specific, time and concentration-dependent manner and was not influenced by the removal of calcium ions. Binding of the ligand appeared to occur to the cell surface and was both saturable and reversible. Kinetic and steady state data indicated a single class of binding sites. 3. The pharmacology of [(3)H]-heparin binding was examined in displacement studies using unlabelled heparin and structural analogues. A comparison of the rank potencies of heparin, heparan sulphate fraction II, low molecular weight heparin and trehalose octasulphate showed that there was a marked discrepancy between their estimated affinities in the binding assays and their effect on DNA synthesis. 4. In summary, we have characterized the heparin binding site on human saphenous vein-derived VSMC. Our findings suggest that the action of heparin and its analogues on DNA synthesis does not simply reflect an interaction with the cell-associated heparin binding site defined in these studies, but may also be determined by the internalization and metabolism of the glycosaminoglycan(s)
    corecore