160 research outputs found

    Avian seasonal reproduction in times of global warming:Insights from evolution, ecology and (epi-)genomics

    Get PDF
    In this thesis, I focused on avian seasonal reproduction in times of global warming in the great tit study population at the Hoge Veluwe. I assessed the evolutionary implications of the phenological mismatch between chick feeding and prey abundance and the genomic basis of lay dates in great tits with a focus on DNA methylation. The main conclusions are that (1) recent variability in global warming weakened the phenological mismatch and directional selection on lay dates in the study population, but long-term global warming will again lead to an intensified phenological mismatch, (2) genomic selection for early and late lay dates led to an asymmetric phenotypic response under wild conditions, indicating the presence of constraints on advanced lay dates, (3) DNA methylation in blood has limited potential to reflect functional signatures of DNA methylation in ovary (and potentially other target tissues) without prior validation and (4) genomic variation for lay date in great tits resides in temperature-sensitivity offering a potential mechanism at which selection can take hold in the study population. However, I did not fully resolve the questions of the evolutionary implications of the phenological mismatch and the genomic architecture of lay dates in great tits. Hence, we need further studies to derive robust predictions for the potential of great tits and other wild bird species to adapt to global warming

    Recent natural variability in global warming weakened phenological mismatch and selection on seasonal timing in great tits (<i>Parus major</i>)

    Get PDF
    Climate change has led to phenological shifts in many species, but with large variation in magnitude among species and trophic levels. The poster child example of the resulting phenological mismatches between the phenology of predators and their prey is the great tit (Parus major), where this mismatch led to directional selection for earlier seasonal breeding. Natural climate variability can obscure the impacts of climate change over certain periods, weakening phenological mismatching and selection. Here, we show that selection on seasonal timing indeed weakened significantly over the past two decades as increases in late spring temperatures have slowed down. Consequently, there has been no further advancement in the date of peak caterpillar food abundance, while great tit phenology has continued to advance, thereby weakening the phenological mismatch. We thus show that the relationships between temperature, phenologies of prey and predator, and selection on predator phenology are robust, also in times of a slowdown of warming. Using projected temperatures from a large ensemble of climate simulations that take natural climate variability into account, we show that prey phenology is again projected to advance faster than great tit phenology in the coming decades, and therefore that long-term global warming will intensify phenological mismatches

    Performance of methods to detect genetic variants from bisulphite sequencing data in a non-model species

    Get PDF
    The profiling of epigenetic marks like DNA methylation has become a central aspect of studies in evolution and ecology. Bisulphite sequencing is commonly used for assessing genome-wide DNA methylation at single nucleotide resolution but these data can also provide information on genetic variants like single nucleotide polymorphisms (SNPs). However, bisulphite conversion causes unmethylated cytosines to appear as thymines, complicating the alignment and subsequent SNP calling. Several tools have been developed to overcome this challenge, but there is no independent evaluation of such tools for non-model species, which often lack genomic references. Here, we used whole-genome bisulphite sequencing (WGBS) data from four female great tits (Parus major) to evaluate the performance of seven tools for SNP calling from bisulphite sequencing data. We used SNPs from whole-genome resequencing data of the same samples as baseline SNPs to assess common performance metrics like sensitivity, precision, and the number of true positive, false positive, and false negative SNPs for the full range of variant and genotype quality values. We found clear differences between the tools in either optimizing precision (Bis-SNP), sensitivity (biscuit), or a compromise between both (all other tools). Overall, the choice of SNP caller strongly depends on which performance parameter should be maximized and whether ascertainment bias should be minimized to optimize downstream analysis, highlighting the need for studies that assess such differences.Peer reviewe

    Rapid changes in DNA methylation associated with the initiation of reproduction in a small songbird

    Get PDF
    Species with a circannual life cycle need to match the timing of their life history events to the environment to maximize fitness. However, our understanding of how circannual traits such as timing of reproduction are regulated on a molecular level remains limited. Recent studies have implicated that epigenetic mechanisms can be an important part in the processes that regulate circannual traits. Here, we explore the role of DNA methylation in mediating reproductive timing in a seasonally breeding bird species, the great tit (Parus major), using genome-wide DNA methylation data from individual females that were blood sampled repeatedly throughout the breeding season. We demonstrate rapid and directional changes in DNA methylation within the promoter region of several genes, including a key transcription factor (NR5A1) known from earlier studies to be involved in the initiation of timing of reproduction. Interestingly, the observed changes in DNA methylation at NR5A1 identified here are in line with earlier gene expression studies of reproduction in chicken, indicating that the observed shifts in DNA methylation at this gene can have a regulatory role. Our findings provide an important step towards elucidating the genomic mechanism that mediates seasonal timing of a key life history traits and provide support for the idea that epigenetic mechanisms may play an important role in circannual traits.Peer reviewe

    An ecologist's guide for studying DNA methylation variation in wild vertebrates

    Get PDF
    The field of molecular biology is advancing fast with new powerful technologies, sequencing methods and analysis software being developed constantly. Commonly used tools originally developed for research on humans and model species are now regularly used in ecological and evolutionary research. There is also a growing interest in the causes and consequences of epigenetic variation in natural populations. Studying ecological epigenetics is currently challenging, especially for vertebrate systems, because of the required technical expertise, complications with analyses and interpretation, and limitations in acquiring sufficiently high sample sizes. Importantly, neglecting the limitations of the experimental setup, technology and analyses may affect the reliability and reproducibility, and the extent to which unbiased conclusions can be drawn from these studies. Here, we provide a practical guide for researchers aiming to study DNA methylation variation in wild vertebrates. We review the technical aspects of epigenetic research, concentrating on DNA methylation using bisulfite sequencing, discuss the limitations and possible pitfalls, and how to overcome them through rigid and reproducible data analysis. This review provides a solid foundation for the proper design of epigenetic studies, a clear roadmap on the best practices for correct data analysis and a realistic view on the limitations for studying ecological epigenetics in vertebrates. This review will help researchers studying the ecological and evolutionary implications of epigenetic variation in wild populations

    Avian ecological epigenetics : pitfalls and promises

    Get PDF
    Epigenetic mechanisms can alter gene expression without a change in the nucleotide sequence and are increasingly recognized as important mechanisms that can generate phenotypic diversity. Most of our current knowledge regarding the origin and role of epigenetic variation comes from research on plants or mammals, often in controlled rearing conditions. Epigenetic research on birds in their natural habitats is still in its infancy, but is needed to answer questions regarding the origin of epigenetic marks and their role in phenotypic variation and evolution. Here we review the potential for studying epigenetic variation in natural bird systems. We aim to provide insights into (1) the origin of epigenetic variation, (2) the relationship between epigenetic variation and trait variation, and (3) the possible role of epigenetic variation in adaptation to changing environments. As there is currently little research on epigenetics in wild birds, we examine how findings on other taxa such as plants and mammals relate to birds. We also examine some of the pros and cons of the most commonly used methods to study patterns of DNA methylation in birds, and suggest some topics we believe need to be addressed to develop the field of wild avian epigenetics further.Peer reviewe

    Transcriptomics and proteomics reveal two waves of translational repression during the maturation of malaria parasite sporozoites.

    Get PDF
    Plasmodium sporozoites are transmitted from infected mosquitoes to mammals, and must navigate the host skin and vasculature to infect the liver. This journey requires distinct proteomes. Here, we report the dynamic transcriptomes and proteomes of both oocyst sporozoites and salivary gland sporozoites in both rodent-infectious Plasmodium yoelii parasites and human-infectious Plasmodium falciparum parasites. The data robustly define mRNAs and proteins that are upregulated in oocyst sporozoites (UOS) or upregulated in infectious sporozoites (UIS) within the salivary glands, including many that are essential for sporozoite functions in the vector and host. Moreover, we find that malaria parasites use two overlapping, extensive, and independent programs of translational repression across sporozoite maturation to temporally regulate protein expression. Together with gene-specific validation experiments, these data indicate that two waves of translational repression are implemented and relieved at different times during sporozoite maturation, migration and infection, thus promoting their successful development and vector-to-host transition

    Temporal changes in DNA methylation and RNA expression in a small song bird: within- and between-tissue comparisons

    Get PDF
    BackgroundDNA methylation is likely a key mechanism regulating changes in gene transcription in traits that show temporal fluctuations in response to environmental conditions. To understand the transcriptional role of DNA methylation we need simultaneous within-individual assessment of methylation changes and gene expression changes over time. Within-individual repeated sampling of tissues, which are essential for trait expression is, however, unfeasible (e.g. specific brain regions, liver and ovary for reproductive timing). Here, we explore to what extend between-individual changes in DNA methylation in a tissue accessible for repeated sampling (red blood cells (RBCs)) reflect such patterns in a tissue unavailable for repeated sampling (liver) and how these DNA methylation patterns are associated with gene expression in such inaccessible tissues (hypothalamus, ovary and liver). For this, 18 great tit (Parus major) females were sacrificed at three time points (n=6 per time point) throughout the pre-laying and egg-laying period and their blood, hypothalamus, ovary and liver were sampled.ResultsWe simultaneously assessed DNA methylation changes (via reduced representation bisulfite sequencing) and changes in gene expression (via RNA-seq and qPCR) over time. In general, we found a positive correlation between changes in CpG site methylation in RBCs and liver across timepoints. For CpG sites in close proximity to the transcription start site, an increase in RBC methylation over time was associated with a decrease in the expression of the associated gene in the ovary. In contrast, no such association with gene expression was found for CpG site methylation within the gene body or the 10kb up- and downstream regions adjacent to the gene body.ConclusionTemporal changes in DNA methylation are largely tissue-general, indicating that changes in RBC methylation can reflect changes in DNA methylation in other, often less accessible, tissues such as the liver in our case. However, associations between temporal changes in DNA methylation with changes in gene expression are mostly tissue- and genomic location-dependent. The observation that temporal changes in DNA methylation within RBCs can relate to changes in gene expression in less accessible tissues is important for a better understanding of how environmental conditions shape traits that temporally change in expression in wild populations.</div

    Corticotropin-stimulated steroid profiles to predict shock development and mortality in sepsis: From the HYPRESS study

    Get PDF
    Rationale Steroid profiles in combination with a corticotropin stimulation test provide information about steroidogenesis and its functional reserves in critically ill patients. Objectives We investigated whether steroid profiles before and after corticotropin stimulation can predict the risk of in-hospital death in sepsis. Methods An exploratory data analysis of a double blind, randomized trial in sepsis (HYPRESS [HYdrocortisone for PRevention of Septic Shock]) was performed. The trial included adult patients with sepsis who were not in shock and were randomly assigned to placebo or hydrocortisone treatment. Corticotropin tests were performed in patients prior to randomization and in healthy subjects. Cortisol and precursors of glucocorticoids (17-OH-progesterone, 11-desoxycortisol) and mineralocorticoids (11-desoxycorticosterone, corticosterone) were analyzed using the multi-analyte stable isotope dilution method (LC–MS/MS). Measurement results from healthy subjects were used to determine reference ranges, and those from placebo patients to predict in-hospital mortality. Measurements and main results Corticotropin tests from 180 patients and 20 volunteers were included. Compared to healthy subjects, patients with sepsis had elevated levels of 11-desoxycorticosterone and 11-desoxycortisol, consistent with activation of both glucocorticoid and mineralocorticoid pathways. After stimulation with corticotropin, the cortisol response was subnormal in 12% and the corticosterone response in 50% of sepsis patients. In placebo patients (n = 90), a corticotropin-stimulated cortisol-to-corticosterone ratio > 32.2 predicted in-hospital mortality (AUC 0.8 CI 0.70–0.88; sensitivity 83%; and specificity 78%). This ratio also predicted risk of shock development and 90-day mortality. Conclusions In this exploratory analysis, we found that in sepsis mineralocorticoid steroidogenesis was more frequently impaired than glucocorticoid steroidogenesis. The corticotropin-stimulated cortisol-to-corticosterone ratio predicts the risk of in-hospital death. Trial registration Clinical trial registered with www.clinicaltrials.gov Identifier: NCT00670254. Registered 1 May 2008, https://clinicaltrials.gov/ct2/show/NCT00670254
    • …
    corecore