63 research outputs found

    A Life is Theft: a Cremation and a Birth in Singapore

    Get PDF

    The determination of salivary oxypurines before and after exercise by combined liquid chromatography-field asymmetric waveform ion mobility spectrometry-time-of-flight mass spectrometry

    Get PDF
    © 2018 Springer-Verlag GmbH Germany, part of Springer Nature A method combining field asymmetric waveform ion mobility spectrometry with liquid chromatography-mass spectrometry (LC-FAIMS-MS) has been developed for the analysis of the oxypurine compounds hypoxanthine (HX) and xanthine (XA) in saliva. Separation of the oxypurines from interfering matrix components was investigated using FAIMS-MS. The selected FAIMS parameters were then applied to the rapid LC-FAIMS-MS analysis of HX and XA using a short chromatographic separation method (7 min). A comparison of the LC-MS method with and without FAIMS applied, resulted in improved discrimination from saliva matrix interferences and improved chromatographic peak integration for both HX and XA using a FAIMS separation. A quantitative evaluation of the LC-FAIMS-MS method was performed giving limits of detection of 2.0 ng mL −1 for HX and 1.8 ng mL −1 for XA, and limits of quantification of 6.6 ng mL −1 for HX and 6.0 ng mL −1 for XA. The developed LC-FAIMS-MS method was applied to the targeted analysis of the oxypurine metabolites in saliva collected from healthy male athletes (n = 11) before and after exercise designed to induce oxidative stress; post-exercise collection time-points included immediately after exercise, one hour and twenty-four hours’ post-exercise. The salivary concentrations of both HX and XA were lower after physical exercise, compared to the pre-exercise (rest) concentrations and returned to approximately pre-exercise levels after twenty-four hours. The method reported has the potential for monitoring the salivary oxypurines, HX and XA, as biomarkers of oxidative stress and in other clinical applications

    Gender Differences in Head Impacts Sustained by Collegiate Ice Hockey Players

    Get PDF
    Purpose—This study aims to quantify the frequency, magnitude, and location of head impacts sustained by male and female collegiate ice hockey players over two seasons of play. Methods—Over two seasons, 88 collegiate athletes (51 female, 37 male) on two female and male NCAA varsity ice hockey teams wore instrumented helmets. Each helmet was equipped with 6 single-axis accelerometers and a miniature data acquisition system to capture and record head impacts sustained during play. Data collected from the helmets were post-processed to compute linear and rotational acceleration of the head as well as impact location. The head impact exposure data (frequency, location, and magnitude) were then compared across gender. Results—Female hockey players experienced a significantly lower (p \u3c 0.001) number of impacts per athlete exposure than males (female: 1.7 ± 0.7; male: 2.9 ± 1.2). The frequency of impacts by location was the same between gender (p \u3e 0.278) for all locations except the right side of the head, where males received fewer impacts than females (p = 0.031). Female hockey players were 1.1 times more likely than males to sustain an impact less than 50 g while males were 1.3 times more likely to sustain an impact greater than 100 g. Similarly, males were 1.9 times more likely to sustain an impact with peak rotational acceleration greater than 5,000 rad/s2 and 3.5 times more likely to sustain an impact greater than 10,000 rad/s2. Conclusions—Although the incidence of concussion has typically been higher for female hockey players than male hockey players, female players sustain fewer impacts and impacts resulting in lower head acceleration than males. Further study is required to better understand th

    Real-time monitoring of exhaled volatiles using atmospheric pressure chemical ionization on a compact mass spectrometer

    Get PDF
    © 2016 Future Science Ltd.Aim: Breath analyses have potential to detect early signs of disease onset. Ambient ionization allows direct combination of breath gases with MS for fast, on-line analysis. Portable MS systems would facilitate field/clinic-based breath analyses. Results & methodology: Volunteers ingested peppermint oil capsules and exhaled volatile compounds were monitored over 10 h using a compact mass spectrometer. A rise and fall in exhaled menthone was observed, peaking at 60-120 min. Real-time analysis showed a gradual rise in exhaled menthone postingestion. Sensitivity was comparable to established methods, with detection in the parts per trillion range. Conclusion: Breath volatiles were readily analyzed on a portable mass spectrometer through a simple inlet modification. Induced changes in exhaled profiles were detectable with high sensitivity and measurable in real-time

    Mudança científica: modelos filosóficos e pesquisa histórica

    Full text link

    The Effect of Pressure on Zincblende and Related Structures

    No full text
    144 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 1961.U of I OnlyRestricted to the U of I community idenfinitely during batch ingest of legacy ETD

    Darwenism

    No full text

    Gender Differences in Head Impacts Sustained by Collegiate Ice Hockey Players

    Get PDF
    Purpose—This study aims to quantify the frequency, magnitude, and location of head impacts sustained by male and female collegiate ice hockey players over two seasons of play. Methods—Over two seasons, 88 collegiate athletes (51 female, 37 male) on two female and male NCAA varsity ice hockey teams wore instrumented helmets. Each helmet was equipped with 6 single-axis accelerometers and a miniature data acquisition system to capture and record head impacts sustained during play. Data collected from the helmets were post-processed to compute linear and rotational acceleration of the head as well as impact location. The head impact exposure data (frequency, location, and magnitude) were then compared across gender. Results—Female hockey players experienced a significantly lower (p \u3c 0.001) number of impacts per athlete exposure than males (female: 1.7 ± 0.7; male: 2.9 ± 1.2). The frequency of impacts by location was the same between gender (p \u3e 0.278) for all locations except the right side of the head, where males received fewer impacts than females (p = 0.031). Female hockey players were 1.1 times more likely than males to sustain an impact less than 50 g while males were 1.3 times more likely to sustain an impact greater than 100 g. Similarly, males were 1.9 times more likely to sustain an impact with peak rotational acceleration greater than 5,000 rad/s2 and 3.5 times more likely to sustain an impact greater than 10,000 rad/s2. Conclusions—Although the incidence of concussion has typically been higher for female hockey players than male hockey players, female players sustain fewer impacts and impacts resulting in lower head acceleration than males. Further study is required to better understand th
    • …
    corecore