519 research outputs found

    Towards F1 Hybrid Seed Potato Breeding

    Get PDF
    Compared to other major food crops, progress in potato yield as the result of breeding efforts is very slow. Genetic gains cannot be fixed in potato due to obligatory out-breeding. Overcoming inbreeding depression using diploid self-compatible clones should enable to replace the current method of out-breeding and clonal propagation into an F1 hybrid system with true seeds. This idea is not new, but has long been considered unrealistic. Severe inbreeding depression and self-incompatibility in diploid germplasm have hitherto blocked the development of inbred lines. Back-crossing with a homozygous progenitor with the Sli gene which inhibits gametophytic self-incompatibility gave self-compatible offspring from elite material from our diploid breeding programme. We demonstrate that homozygous fixation of donor alleles is possible, with simultaneous improvement of tuber shape and tuber size grading of the recipient inbred line. These results provide proof of principle for F1 hybrid potato breeding. The technical and economic perspectives are unprecedented as these will enable the development of new products with combinations of useful traits for all stakeholders in the potato chain. In addition, the hybrid’s seeds are produced by crossings, rendering the production and voluminous transport of potato seed tubers redundant as it can be replaced by direct sowing or the use of healthy mini-tubers, raised in greenhouses

    Preface

    Get PDF

    Genetic research in a public-private research consortium: prospects for indirect use of Elige breeding germplasm in academic research

    Get PDF
    The creation of a public¿private research partnership between plant breeding industry and academia can be beneficial for all parties involved. Academic partners benefit from the material contributions by industry and a practically relevant research focus, while industry benefits from increased insights and methodology tailored to a relevant set of data. However, plant breeding industry is highly competitive and there are obvious limits to the data and material partners are willing and able to share. This will usually include current and historic released cultivated materials, but will very often not include the elite germplasm used in-house to create new cultivars. Especially for crops where hybrid cultivars dominate the market, parental lines of hybrid cultivars are considered core assets that are never provided to outside parties. However, this limitation often does not apply to DNA or genetic fingerprints of these parental lines. We developed a procedure to take advantage of elite breeding materials for the creation of new promising research populations, through indirect selection of parents. The procedure starts with the identification of a number of traits for further study based on the presence of marker-trait associations and a priori knowledge within the participating companies about promising traits for quality improvement. Next, regression-based multi-QTL models are fitted to hybrid cultivar data to identify QTLs. Fingerprint data of parental lines of a limited number of specific hybrids are then used to predict parental phenotypes using the multi-QTL model fitted on hybrid data. The specific hybrids spanned the whole of the sensory space adequately. Finally, a choice of parental lines is made based on the QTL model predictions and new promising line combinations are identified. Breeding industry is then asked to create and provide progeny of these line combinations for further research. This approach will be illustrated with a case study in tomato

    Tomato defense to the powdery mildew fungus: differences in expression of genes in susceptible, monogenic- and polygenic resistance responses are mainly in timing

    Get PDF
    Oidium neolycopersici is a causal agent of tomato powdery mildew. In this paper, gene expression profiles were investigated of susceptible, monogenic- and polygenic resistant tomato genotypes in response to O. neolycopersici infection by using cDNA-AFLP. Around 30,000 TDFs (Transcript Derived Fragments), representing approximately 22% of the transcriptome based on in silico estimation, were identified and 887 TDFs were differentially expressed (DE-TDFs) upon inoculation with O. neolycopersici spores. Forty-two percent of the identified DE-TDFs were detected in both the compatible and incompatible interactions, a subset of these were studied for their temporal patterns. All of these common induced DE-TDFs displayed an expression peak at 7 days post incoluation in monogenic resistant response but sustained up-regulation in the susceptible and the polygenic resistant response. While more than half of these common DE-TDFs showed earlier timing in incompatible interactions compared to compatible interaction. Only 2% of the identified DE-TDFs were specific to either the monogenic or the polygenic resistant response. By annotation of the 230 sequenced DE-TDFs we found that 34% of the corresponding transcripts were known to be involved in plant defense, whereas the other transcripts played general roles in signal transduction (11%), regulation (24%), protein synthesis and degradation (11%), energy metabolism (12%) including photosynthesis, photorespiration and respiratio

    The tomato Orion locus comprises a unique class of Hcr9 genes

    Get PDF
    Resistance against the tomato fungal pathogen Cladosporium fulvum is often conferred by Hcr9 genes (Homologues of the C. fulvum resistance gene Cf-9) that are located in the Milky Way cluster on the short arm of chromosome 1. These Hcr9 genes mediate recognition of fungal avirulence gene products. In contrast, the resistance gene Cf-Ecp2 mediates recognition of the virulence factor Ecp2 and is located in the Orion (OR) cluster on the short arm of chromosome 1. Here, we report the map- and homology-based cloning of the OR Hcr9 cluster. A method was optimised to generate clone-specific fingerprint data that were subsequently used in the efficient calculation of genomic DNA contigs. Three Hcr9s were identified as candidate Cf-Ecp2 genes. By PCR-based cloning using specific OR sequences, orthologous Hcr9 genes were identified from different Lycopersicon species and haplotypes. The OR Hcr9s are very homologous. However, based on the relative low sequence homology to other Hcr9s, the OR Hcr9s are classified as a new subgrou

    Aspects of participatory plant breeding for quinoa in marginal areas of Ecuador

    Get PDF
    Field trials were carried out in Ecuador with two indigenous communities, Ninín Cachipata and La Esperanza, to determine farmers¿ preferences for quinoa (Chenopodium quinoa Willd.) cultivars and to improve PPB processes. More women than men participated, reflecting that quinoa, a primarily subsistence crop, is mainly managed by women. Farmers¿ field selection criteria for quinoa in the field were mostly based on yield, earliness and plant colour; however only breeders¿ measurements of yield and panicle height significantly correlated to farmer selection scores. Older women gave higher scores than younger women or men, apparently due to a concept of no cultivar being without value. Working in same gender pairs improved evaluation richness. INIAP technicians were more discriminating in their evaluations than farmers. They also used additional selection criteria of disease resistance and uniformity. At seed selection, farmers from Ninín Cachipata, where food security is not assured, chose lines based on yield, while farmers from La Esperanza, where resources are less limiting, also considered seed size, colour, saponin content and marketability. Field characteristics were not taken into consideration at seed selection, signifying that farmers are less interested in those characteristics, or that it was difficult for them to correlate field data when presented in tabular form with seed characteristics. Future trials with small farmers should have fewer lines or replications to avoid farmer fatigue during evaluation. Farmers who grow primarily for subsistence in semi-arid environments have more interest in growing quinoa, and more to gain from having improved cultivars; therefore future participatory efforts should focus on the

    Map- vs. homology-based cloning for the recessive gene ol-2 conferring resistance to tomato powdery mildew

    Get PDF
    The recessive gene ol-2 confers papilla-associated and race-non-specific resistance to tomato powdery mildew caused by Oidium neolycopersici. In order to facilitate marker assisted selection (MAS) in practical breeding programmes, we identified two simple sequence repeat (SSR) markers and one cleaved amplified polymorphic sequence (CAPS) marker which are linked to the resistance locus and co-dominantly inherited. Aiming to provide a base for ol-2 positional cloning, we used a large segregating F2 population to merge these markers with all the ol-2 linked amplified fragment length polymorphism (AFLP®) markers previously identified in an integrated genetic map. By screening a tomato bacterial artificial chromosome (BAC) library, we detected two BAC clones containing two expressed sequence tags (ESTs) homologous to the gene mlo, responsible for powdery mildew resistance in barley, as well as an ol-2-linked marker. Chromosomal mapping by Fluorescence in situ Hybridization (FISH) revealed major signals of the two BAC DNAs in the pericentromeric heterochromatin of the short arm of chromosome 4, in the same region where the ol-2 gene was previously mapped. The genetic and cytogenetic co-localisation between ol-2 and tomato mlo-homologue(s), in addition to the similarity of ol-2 and mlo resistances for both genetic and phytopathological characteristics, suggests that ol-2 is likely a mlo-homologue. Thus, a homology-based cloning approach could be more suitable than positional cloning for ol-2 isolation

    Efficient QTL detection for nonhost resistance in wild lettuce: backcross inbred lines versus F2 population

    Get PDF
    In plants, several population types [F2, recombinant inbred lines, backcross inbred lines (BILs), etc.] are used for quantitative trait locus (QTL) analyses. However, dissection of the trait of interest and subsequent confirmation by introgression of QTLs for breeding purposes has not been as successful as that predicted from theoretical calculations. More practical knowledge of different QTL mapping approaches is needed. In this recent study, we describe the detection and mapping of quantitative resistances to downy mildew in a set of 29 BILs of cultivated lettuce (L. sativa) containing genome segments introgressed from wild lettuce (L. saligna). Introgression regions that are associated with quantitative resistance are considered to harbor a QTL. Furthermore, we compare this with results from an already existing F2 population derived from the same parents. We identified six QTLs in our BIL approach compared to only three in the F2 approach, while there were two QTLs in common. We performed a simulation study based on our actual data to help us interpret them. This revealed that two newly detected QTLs in the BILs had gone unnoticed in the F2, due to a combination of recessiveness of the trait and skewed segregation, causing a deficit of the wild species alleles. This study clearly illustrates the added value of extended genetic studies on two different population types (BILs and F2) to dissect complex genetic traits

    Childrearing style of anxiety-disordered parents

    Get PDF
    FSW - Self-regulation models for health behavior and Psychopathology - Ou
    corecore